Skip to main content
Log in

A peroxynitrite complex of copper: formation from a copper–nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)–(·NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO)–Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO2 ) complex and 0.5 mol equiv O2. In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper–nitrosyl and copper–peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A weak 655 nm absorption observed is believed to be from a dimer form with bridging NO ligands, Cu II2 –(NO)2; further investigations are required.

  2. As a general check of the validity of the calculations and the basis set employed in this report, they were repeated for the nitrito complex with known X-ray structure (described in this paper), [CuII(AN)(NO2 )]+, using two different (larger) basis sets. First, the calculations used a TZVP basis set for the copper atom. Then, an additional set of diffuse functions was added to nonmetal atoms. Although the three optimized structures are very similar to those obtained using the 6-311G* basis set, the latter provided closer agreement with the observed experimental X-ray structure (with its \( d_{{x^{2} - y^{2} }} \) ground state). For these reasons, it was considered appropriate for use in the calculations and the results presented.

Abbreviations

AN:

3,3′-Iminobis(N,N′-dimethylpropylamine)

DFT:

Density functional theory

2,4-DTBP:

2,4-Di-t-butylphenol

tBu4NCl:

Tetrabutylammonium chloride

THF:

Tetrahydrofuran

TMG3tren:

Tris(2-(N-tetramethylguanidyl)ethyl)amine

References

  1. Tavares P, Pereira AS, Moura JJG, Moura I (2006) J Inorg Biochem 100:2087–2100

    Article  CAS  PubMed  Google Scholar 

  2. Wasser IM, de Vries S, Moënne-Loccoz P, Schröder I, Karlin KD (2002) Chem Rev 102:1201–1234

    Article  CAS  PubMed  Google Scholar 

  3. Ford PC, Lorkovic IM (2002) Chem Rev 102:993–1017

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh S, Dey A, Usov OM, Sun Y, Grigoryants VM, Scholes CP, Solomon EI (2007) J Am Chem Soc 129:10310–10311

    Article  CAS  PubMed  Google Scholar 

  5. Whittaker JW (2003) Chem Rev 103:2347–2363

    Article  CAS  PubMed  Google Scholar 

  6. Humphreys KJ, Mirica LM, Wang Y, Klinman JP (2009) J Am Chem Soc 131:4657–4663

    Article  CAS  PubMed  Google Scholar 

  7. Zumft WG, Kroneck PMH, Robert KP (2006) Advances in microbial physiology. Academic Press, New York, pp 107–227

    Google Scholar 

  8. Chen P, Gorelsky SI, Ghosh S, Solomon EI (2004) Angew Chem Int Ed 43:4132–4140

    Article  CAS  Google Scholar 

  9. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  PubMed  Google Scholar 

  10. Edwards JO, Plumb RC (1993) Prog Inorg Chem 41:599–635

    Article  Google Scholar 

  11. Dedon PC, Tannenbaum SR (2004) Arch Biochem Biophys 423:12–22

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein S, Lind J, Merenyi G (2005) Chem Rev 105:2457–2470

    Article  CAS  PubMed  Google Scholar 

  13. Herold S, Koppenol WH (2005) Coord Chem Rev 249:499–506

    Article  CAS  Google Scholar 

  14. Pacher P, Beckman JS, Liaudet L (2007) Physiol Rev 87:315–424

    Article  CAS  PubMed  Google Scholar 

  15. Gunaydin H, Houk KN (2008) J Am Chem Soc 130:10036–10037

    Article  CAS  PubMed  Google Scholar 

  16. Amatore C, Arbault S, Bouton C, Drapier J-C, Ghandour H, Koh ACW (2008) ChemBioChem 9:1472–1480

    Article  CAS  PubMed  Google Scholar 

  17. Ferrer-Sueta G, Radi R (2009) ACS Chem Biol 4:161–177

    Article  CAS  PubMed  Google Scholar 

  18. Nauser T, Koppenol WH (2002) J Phys Chem A 106:4084–4086

    Article  CAS  Google Scholar 

  19. Pearce LL, Kanai AJ, Birder LA, Pitt BR, Peterson J (2002) J Biol Chem 277:13556–13562

    Article  CAS  PubMed  Google Scholar 

  20. Thomas DD, Espey MG, Vitek MP, Miranda KM, Wink DA (2002) Proc Natl Acad Sci 99:12691–12696

    Article  CAS  PubMed  Google Scholar 

  21. McBride AG, Borutaite V, Brown GC (1999) Biochim Biophys Acta 1454:275–288

    CAS  PubMed  Google Scholar 

  22. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS (1999) Science 286:2498–2500

    Article  CAS  PubMed  Google Scholar 

  23. Liochev SI, Fridovich I (2002) Arch Biochem Biophys 402:166–171

    Article  CAS  PubMed  Google Scholar 

  24. Kirsch M, de Groot H (2002) J Biol Chem 277:13379–13388

    Article  CAS  PubMed  Google Scholar 

  25. Mahammed A, Gross Z (2006) Angew Chem Int Ed 45:6544–6547

    Article  CAS  Google Scholar 

  26. Shimanovich R, Groves JT (2001) Arch Biochem Biophys 387:307–317

    Article  CAS  PubMed  Google Scholar 

  27. Herold S, Rock G (2005) Biochemistry 44:6223–6231

    Article  CAS  PubMed  Google Scholar 

  28. Blomberg LM, Blomberg MRA, Siegbahn PEM (2004) J Biol Inorg Chem 9:923–935

    Article  CAS  PubMed  Google Scholar 

  29. Jensen MP, Riley DP (2002) Inorg Chem 41:4788–4797

    Article  CAS  PubMed  Google Scholar 

  30. Lee J, Hunt JA, Groves JT (1998) J Am Chem Soc 120:7493–7501

    Article  CAS  Google Scholar 

  31. Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN (2006) Free Radic Biol Med 40:453

    Article  CAS  PubMed  Google Scholar 

  32. Shimanovich R, Hannah S, Lynch V, Gerasimchuk N, Mody TD, Magda D, Sessler J, Groves JT (2001) J Am Chem Soc 123:3613–3614

    Article  CAS  PubMed  Google Scholar 

  33. Ferrer-Sueta G, Vitturi D, Batinic-Haberle I, Fridovich I, Goldstein S, Czapski G, Radi R (2003) J Biol Chem 278:27432–27438

    Article  CAS  PubMed  Google Scholar 

  34. Ferrer-Sueta G, Ruiz-Ramirez L, Radi R (1997) Chem Res Toxic 10:1338–1344

    Article  CAS  Google Scholar 

  35. Szabo C, Ischiropoulos H, Radi R (2007) Nat Rev Drug Discov 6:662–680

    Article  CAS  PubMed  Google Scholar 

  36. Hughes MN, Nicklin HG, Sackrule WAC (1971) J Chem Soc A 23:3722–3725

    Article  Google Scholar 

  37. Hughes MN, Nicklin HG (1970) J Chem Soc A 925–928

  38. Babich OA, Gould ES (2002) Res Chem Intermed 28:575–583

    Article  CAS  Google Scholar 

  39. Geletii YV, Patel AD, Hill CL, Casella L, Monzani E (2002) React Kinet Catal L 77:277–285

    Article  CAS  Google Scholar 

  40. Geletii YV, Bailey AJ, Boring EA, Hill CL (2001) Chem Commun 1700

  41. Pellei M, Lobbia GG, Santini C, Spagna R, Camalli M, Fedeli D, Falcioni G (2004) Dalton Trans 2822–2828

  42. Kohnen S, Halusiak E, Mouithys-Mickalad A, Deby-Dupont G, Deby C, Hans P, Lamy M, Noels AF (2005) Nitric Oxide 12:252–260

    Article  CAS  PubMed  Google Scholar 

  43. Schepetkin I, Potapov A, Khlebnikov A, Korotkova E, Lukina A, Malovichko G, Kirpotina L, Quinn MT (2006) J Biol Inorg Chem 11:499–513

    Article  CAS  PubMed  Google Scholar 

  44. Liochev SI, Fridovich I (2001) J Biol Chem 276:35253–35257

    Article  CAS  PubMed  Google Scholar 

  45. Maiti D, Lee D-H, Narducci Sarjeant AA, Pau MYM, Solomon EI, Gaoutchenova K, Sundermeyer J, Karlin KD (2008) J Am Chem Soc 130:6700–6701

    Article  CAS  PubMed  Google Scholar 

  46. Paul PP, Tyeklár Z, Farooq A, Karlin KD, Liu S, Zubieta J (1990) J Am Chem Soc 112:2430–2432

    Article  CAS  Google Scholar 

  47. Carrier S, Ruggiero CE, Tolman WB, Jameson GB (1992) J Am Chem Soc 114:4408–4410

    Article  Google Scholar 

  48. Fujisawa K, Tateda A, Miyashita Y, Okamoto K, Paulat F, Praneeth VKK, Merkle A, Lehnert N (2008) J Am Chem Soc 130:1205–1213

    Article  CAS  PubMed  Google Scholar 

  49. Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339–406

    Article  CAS  Google Scholar 

  50. Lee D-H, Mondal B, Karlin KD (2006) In: Tolman WB (ed) Activation of small molecules: organometallic and bioinorganic perspectives. Wiley-VCH, New York, pp 43–79

  51. Ruggiero CE, Carrier SM, Antholine WE, Whittaker JW, Cramer CJ, Tolman WB (1993) J Am Chem Soc 115:11285–11298

    Article  CAS  Google Scholar 

  52. Wasbotten IH, Ghosh A (2005) J Am Chem Soc 127:15384–15385

    Article  CAS  PubMed  Google Scholar 

  53. Wick PK, Kissner R, Koppenol WH (2000) Helv Chim Acta 83:748–754

    Article  CAS  Google Scholar 

  54. Videla M, Roncaroli F, Slep LD, Olabe JA (2007) J Am Chem Soc 129:278–279

    Article  CAS  PubMed  Google Scholar 

  55. Silaghi-Dumitrescu R (2005) J Mol Struct (Theochem) 722:233–237

    Article  CAS  Google Scholar 

  56. Coppens P, Novozhilova I, Kovalevsky A (2002) Chem Rev 102:861–883

    Article  CAS  PubMed  Google Scholar 

  57. Antonyuk SV, Strange RW, Sawers G, Eady RR, Hasnain SS (2005) Proc Natl Acad Sci USA 102:12041–12046

    Article  CAS  PubMed  Google Scholar 

  58. Kennedy MC, Antholine WE, Li W, Mao Q, Petering DH (1995) Inorg Chim Acta 240:535

    Article  CAS  Google Scholar 

  59. Clarkson SG, Basolo F (1973) Inorg Chem 12:1528–1534

    Article  CAS  Google Scholar 

  60. Frech CM, Blacque O, Schmalle HW, Berke H (2006) Dalton Trans 4590–4598

  61. Lymar SV, Khairutdinov RF, Hurst JK (2003) Inorg Chem 42:5259–5266

    Article  CAS  PubMed  Google Scholar 

  62. Pfeiffer S, Gorren ACF, Schmidt K, Werner E, Hansert B, Bohle DS, Mayer B (1997) J Biol Chem 272:3465–3470

    Article  CAS  PubMed  Google Scholar 

  63. Gherman BF, Tolman WB, Cramer CJ (2006) J Comput Chem 27:1950–1961

    Article  CAS  PubMed  Google Scholar 

  64. Decker A, Solomon EI (2005) Curr Opin Chem Biol 9:152–163

    Article  CAS  PubMed  Google Scholar 

  65. Himes RA, Karlin KD (2009) Curr Opin Chem Biol 13:119–131

    Article  CAS  PubMed  Google Scholar 

  66. Sarangi R, Aboelella N, Fujisawa K, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2006) J Am Chem Soc 128:8286–8296

    Article  CAS  PubMed  Google Scholar 

  67. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Arch Biochem Biophys 298:431–437

    Article  CAS  PubMed  Google Scholar 

  68. Geletti YV, Bailey AJ, Boring EA, Hill CL (2001) Chem Commun 1484–1485

  69. Gunaydin H, Houk KN (2009) Chem Res Toxicol 22:894–898

    Article  CAS  PubMed  Google Scholar 

  70. Liang H-C, Zhang CX, Henson MJ, Sommer RD, Hatwell KR, Kaderli S, Zuberbuehler AD, Rheingold AL, Solomon EI, Karlin KD (2002) J Am Chem Soc 124:4170–4171

    Article  CAS  PubMed  Google Scholar 

  71. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  72. Lee C, Wang Y, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  73. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Wallingford

  74. Gorelsky SI (1997) AOMix: program for molecular orbital analysis. York University, Toronto. http://www.sg-chem.net/

  75. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187

    Article  CAS  Google Scholar 

  76. Portman S, Lüthi H (2000) Chimia 54:766–770

    Google Scholar 

Download references

Acknowledgments

We are grateful to the NIH (K.D.K., GM28962; E.I.S., DK31450) for research support. D.R. thanks the Sixth Framework Programme of the EU for an MC-OIF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Karlin.

Additional information

G. Y. Park, S. Deepalatha, and S. C. Puiu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, G.Y., Deepalatha, S., Puiu, S.C. et al. A peroxynitrite complex of copper: formation from a copper–nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration. J Biol Inorg Chem 14, 1301–1311 (2009). https://doi.org/10.1007/s00775-009-0575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0575-8

Keywords

Navigation