Skip to main content
Log in

DNA binding and oxidative DNA damage induced by a quercetin copper(II) complex: potential mechanism of its antitumor properties

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interaction of a quercetin copper(II) complex with DNA was investigated using UV–vis spectra, fluorescence measurement, viscosity measurement, agarose gel electrophoresis, and thiobarbituric acid reactive substances assay. The results indicate that the quercetin copper(II) complex can promote the cleavage of plasmid DNA, producing single and double DNA strand breaks, and intercalate into the stacked base pairs of DNA. Moreover, the complex can induce oxidative DNA damage involving generation of reactive oxygen species such as H2O2 and Cu(I)OOH. In addition, the cytotoxicity experiments carried out with A549 cells confirmed its apoptosis-inducing activity. And we also demonstrate that the levels of survivin protein expression in A549 cells decreased, and that relative activity of caspase-3 increased significantly after treatment with the complex. So our results suggest that the antitumor mechanism of the quercetin copper(II) complex involves not only its oxidative DNA damage with generation of reactive oxygen species but also its specific interaction with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Galaris D, Evangelou A (2002) Crit Rev Oncol Hematol 42:93–103

    Article  PubMed  Google Scholar 

  2. Kennedy LJ, Moore K Jr, Caulfield JL, Tannenbaum SR, Dedon PC (1997) Chem Res Toxicol 10:386–392

    Article  PubMed  CAS  Google Scholar 

  3. Lloyd DR, Carmichael PL, Phillips DH (1998) Chem Res Toxicol 11:420–427

    Article  PubMed  CAS  Google Scholar 

  4. Russo A, Acquaviva R, Campisi A, Sorrenti V, Di Giacomo C, Virgata G, Barcellona ML, Vanella A (2000) Cell Biol Toxicol 16:91–98

    Article  PubMed  CAS  Google Scholar 

  5. Yamashita N, Tanemura H, Kawanishi S (1999) Mutat Res 425:107–115

    PubMed  CAS  Google Scholar 

  6. Rubens FVS, Wagner FG (2004) Redox Rep 9:97–104

    Article  Google Scholar 

  7. Wang T, Chen LX, Long Y, Wu WM, Wang R (2008) Cancer Lett 263:77–88

    Article  PubMed  CAS  Google Scholar 

  8. Hadi SM, Asad SF, Singh S, Ahmad A (2000) IUBMB Life 50:167–171

    Article  PubMed  CAS  Google Scholar 

  9. Speit G, Hochsattel R, Vogel W (1984) Basic Life Sci 29(Pt A):229–244

    PubMed  Google Scholar 

  10. Zheng LF, Wei QY, Cai YJ, Fang JG, Zhou B, Yang L, Liu ZL (2006) Free Radic Biol Med 41:1807–1816

    Article  PubMed  CAS  Google Scholar 

  11. Azmi AS, Bhat SH, Hanif S, Hadi SM (2006) FEBS Lett 580:533–538

    Article  PubMed  CAS  Google Scholar 

  12. Galati G, O’Brien PJ (2004) Free Radic Biol Med 37:287–303

    Article  PubMed  CAS  Google Scholar 

  13. Rahman A, Shahabuddin S, Hadi SM, Parish JH (1990) Carcinogenesis 11:2001–2003

    Article  PubMed  CAS  Google Scholar 

  14. Rubens de Souza FV, Wagner De Giovani F (2004) Redox Rep 9:97–104

    Article  PubMed  Google Scholar 

  15. Zhou J, Wang LF, Wang JY, Tang N (2001) Transition Met Chem 26:57–63

    Article  CAS  Google Scholar 

  16. Ferrer EG, Salinas MV, Correa MJ, Naso L, Barrio DA, Etcheverry SB, Lezama L, Rojo T, Williams PAM (2006) J Biol Inorg Chem 11:791–801

    Article  PubMed  CAS  Google Scholar 

  17. Tan J, Wang BC, Zhu LC (2007) Bioorg Med Chem Lett 17:1197–1199

    Article  CAS  Google Scholar 

  18. Tan J, Wang BC, Zhu LC (2007) Colloids Surf B Biointerfaces 55:149–152

    Article  CAS  Google Scholar 

  19. Tan J, Wang BC, Zhu LC (2009) Bioorg Med Chem 17:614–620

    Article  PubMed  CAS  Google Scholar 

  20. Stoewe R, Prutz WA (1987) Free Radic Biol Med 3:97–105

    Article  PubMed  CAS  Google Scholar 

  21. Milne L, Nicotera P, Orrenius S, Burkitt MJ (1993) Arch Biochem Biophys 304:102–109

    Article  PubMed  CAS  Google Scholar 

  22. Cohen G, Eisenberg H (1969) Biopolymers 8:45–55

    Article  CAS  Google Scholar 

  23. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  24. Masataka Y, Miyako H, Makoto N, Keiko M (1999) Mol Genet Metab 68:468–472

    Article  Google Scholar 

  25. Nègre-Salvayre A, Salvayre R (1992) Free Radic Biol Med 12:101–106

    Article  PubMed  Google Scholar 

  26. Cai L, Tsiapalis G, Cherian MG (1998) Chem Biol Interact 115:141–151

    Article  PubMed  CAS  Google Scholar 

  27. Buettner GR (1986) Free Radic Res Commun 1:349–353

    Article  PubMed  CAS  Google Scholar 

  28. Ni Z, Du S, Kokot S (2007) Anal Chim Acta 584:19–27

    Article  PubMed  CAS  Google Scholar 

  29. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochemistry 31:9319–9324

    Article  PubMed  CAS  Google Scholar 

  30. Hirohama T, Kuranuki Y, Ebina E, Sugizaki T, Arii H, Chikira M, Selvi PT, Palaniandavar M (2005) J Inorg Biochem 99:1205–1219

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto K, Kawanishi S (1989) J Biol Chem 264:15435–15440

    PubMed  CAS  Google Scholar 

  32. Liu Y, Deng K, Li J, Liu S, Yao S (2004) Biophys Chem 112:69–76

    Article  PubMed  CAS  Google Scholar 

  33. Gali HU, Perchellet EM, Klish DS, Johnson JM, Perchellet JP (1992) Int J Cancer 51:425–432

    Article  PubMed  CAS  Google Scholar 

  34. Zhang WH, Tsan R, Huang WC, Wu QY, Chiu CH, Fidler IJ, Hung MC (2008) Cancer Cell 13:385–393

    Article  CAS  Google Scholar 

  35. Wu JG, Ling X, Pan DL, Apontes P, Song L, Liang P, Altieri DC, Beerman T, Li FZ (2005) J Biol Chem 280:9745–9751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Science and Technology Project of Education Commission of Chongqing (grant no. KJ051503) and a China Postdoctoral Science Foundation funded project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Tan or Bochu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Wang, B. & Zhu, L. DNA binding and oxidative DNA damage induced by a quercetin copper(II) complex: potential mechanism of its antitumor properties. J Biol Inorg Chem 14, 727–739 (2009). https://doi.org/10.1007/s00775-009-0486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0486-8

Keywords

Navigation