Skip to main content
Log in

Tunnel mutagenesis and Ni-dependent reduction and methylation of the α subunit of acetyl coenzyme A synthase/carbon monoxide dehydrogenase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two isolated α subunit mutants (A110C and A222L) of the α2β2 acetyl coenzyme A synthase (ACS)/carbon monoxide dehydrogenase (CODH) from Moorella thermoacetica were designed to block the CO-migrating tunnel in the α subunit, allowing comparison with equivalent mutants in ACS/CODH. After Ni activation, both mutants exhibited electron paramagnetic resonance spectra indicating that the A-cluster was properly assembled. ACS activities were similar to those of the wild-type recombinant Ni-activated α subunit, suggesting that CO diffuses directly to the A-cluster from solvent rather than through the tunnel as is observed for the “majority” activity of ACS/CODH. Thus, CO appears to migrate to the A-cluster through two pathways, one involving and one not involving the tunnel. The kinetics and extent of reduction of the Fe4S4 cubane in the apo-α subunit and the Ni-activated α subunit upon exposure to titanium(III) citrate were examined using the stopped-flow method. The extent of reduction was independent of Ni, whereas the kinetics of reduction was Ni-dependent. Apo-α subunit reduction was monophasic while Ni-activated α subunit reduction was biphasic, with the more rapid phase coincident with that of apo-α subunit reduction. Thus, binding of Ni to the A-cluster slows the reduction kinetics of the [Fe4S4]2+ cubane. An upper limit of two electrons per α subunit are transferred from titanium(III) citrate to the Ni subcomponent of the A-cluster during reductive activation. These electrons are accepted quickly relative to the reduction of the [Fe4S4]2+ cubane. This reduction is probably a prerequisite for methyl group transfer. CO appears to bind to reduced nonfunctional subunits, thereby inhibiting reduction (or promoting reoxidation) of the cubane subcomponent of the A-cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ragsdale SW (2004) Crit Rev Biochem Mol Biol 39:165–195

    Article  PubMed  CAS  Google Scholar 

  2. Riordan CG (2004) J Biol Inorg Chem 9:542–549

    PubMed  CAS  Google Scholar 

  3. Brunold TC (2004) J Biol Inorg Chem 9:533–541

    Article  PubMed  CAS  Google Scholar 

  4. Volbeda A, Fontecilla-Camps JC (2005) Dalton Trans 21:3443–3450

    Article  PubMed  Google Scholar 

  5. Harrop TC, Mascharak PK (2005) Coord Chem Rev 249:3007–3024

    Article  CAS  Google Scholar 

  6. Lindahl PA, Graham DE (2007) In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, vol 2. Wiley, Chichester, pp 357–416

  7. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) Science 298:567–572

    Article  PubMed  CAS  Google Scholar 

  8. Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC (2003) Nat Struct Biol 10:271–279

    Article  PubMed  CAS  Google Scholar 

  9. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R, Meyer O (2004) Proc Natl Acad Sci USA 101:446–451

    Article  PubMed  CAS  Google Scholar 

  10. Tan X, Volbeda A, Fontecilla-Camps JC, Lindahl PA (2006) J Biol Inorg Chem 11:371–378

    Article  PubMed  CAS  Google Scholar 

  11. Loke HK, Tan X, Lindahl PA (2002) J Am Chem Soc 124:8667–8672

    Article  PubMed  CAS  Google Scholar 

  12. Tan XS, Kagiampakis I, Surovtsev IV, Demeler B, Lindahl PA (2007) Biochemistry 46:11606–11613

    Article  PubMed  CAS  Google Scholar 

  13. Xia J, Lindahl PA (1996) J Am Chem Soc 118:483–484

    Article  CAS  Google Scholar 

  14. Xia J, Hu J, Popescu C, Lindahl PA, Münck E (1997) J Am Chem Soc 119:8301–8312

    Article  CAS  Google Scholar 

  15. Shin W, Anderson ME, Lindahl PA (1993) J Am Chem Soc 115:5522–5526

    Article  CAS  Google Scholar 

  16. Lindahl PA, Münck E, Ragsdale SW (1990) J Biol Chem 265:3873–3879

    PubMed  CAS  Google Scholar 

  17. Lindahl PA, Ragsdale SW, Münck E (1990) J Biol Chem 265:3880–3888

    PubMed  CAS  Google Scholar 

  18. Bramlett MR, Stubna A, Tan X, Surovtsev IV, Münck E, Lindahl PA (2006) Biochemistry 45:8674–8685

    Article  PubMed  CAS  Google Scholar 

  19. Russell WK, Stålhandske CMV, Xia J, Scott RA, Lindahl PA (1998) J Am Chem Soc 120:7502–7510

    Article  CAS  Google Scholar 

  20. Gu WW, Gencic S, Cramer SP, Grahame DA (2003) J Am Chem Soc 125:15343–15351

    Article  PubMed  CAS  Google Scholar 

  21. Funk T, Gu WW, Friedrich S, Wang HX, Gencic S, Grahame DA, Cramer SP (2004) J Am Chem Soc 126:88–95

    Article  PubMed  CAS  Google Scholar 

  22. Lindahl PA (2004) J Biol Inorg Chem 9:516–524

    Article  PubMed  CAS  Google Scholar 

  23. Barondeau DP, Lindahl PA (1997) J Am Chem Soc 119:3959–3970

    Article  CAS  Google Scholar 

  24. Tan X, Sewell C, Lindahl PA (2001) J Am Chem Soc 124:6277–6284

    Article  Google Scholar 

  25. Tan X, Sewell C, Yang Q, Lindahl PA (2003) J Am Chem Soc 125:318

    Article  PubMed  CAS  Google Scholar 

  26. Tan XS, Loke HK, Fitch S, Lindahl PA (2005) J Am Chem Soc 127:5833–5839

    Article  PubMed  CAS  Google Scholar 

  27. Grahame DA, Khangulov S, DeMoll E (1996) Biochemistry 35:593–600

    Article  PubMed  CAS  Google Scholar 

  28. Tan X, Surovtsev IV, Lindahl PA (2006) J Am Chem Soc 128:12331–12338

    Article  PubMed  CAS  Google Scholar 

  29. Eckert NA, Dougherty WG, Yap GPA, Riordan CG (2007) J Am Chem Soc 129:9286–9287

    Article  PubMed  CAS  Google Scholar 

  30. Ragsdale SW, Wood HG, Antholine WE (1985) Proc Natl Acad Sci USA 82:6811–6814

    Article  PubMed  CAS  Google Scholar 

  31. Saravalli J, Kumar M, Ragsdale SW (2002) Biochemistry 41:1807–1819

    Article  Google Scholar 

  32. George SJ, Seravalli J, Ragsdale SW (2005) J Am Chem Soc 127:13500–13501

    Article  PubMed  CAS  Google Scholar 

  33. Maynard EL, Lindahl PA (2001) Biochemistry 40:13262–13267

    Article  PubMed  CAS  Google Scholar 

  34. Maynard EL, Sewell C, Lindahl PA (2001) J Am Chem Soc 123:4697–4703

    Article  PubMed  CAS  Google Scholar 

  35. Pelley JW, Garner CW, Little GH (1978) Anal Biochem 86:341–343

    Article  PubMed  CAS  Google Scholar 

  36. Bhaskar B, DeMoll E, Grahame DA (1998) Biochemistry 37:14491–14499

    Article  PubMed  CAS  Google Scholar 

  37. Lu WP, Ragsdale SW (1991) J Biol Chem 266:3554–3564

    PubMed  CAS  Google Scholar 

  38. Seravalli J, Ragsdale SW (2000) Biochemistry 39:1274–1277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anne Volbeda for kindly preparing Fig. 2. This work was supported by the National Institutes of Health (GM46441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Lindahl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (PDF 19.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Lindahl, P.A. Tunnel mutagenesis and Ni-dependent reduction and methylation of the α subunit of acetyl coenzyme A synthase/carbon monoxide dehydrogenase. J Biol Inorg Chem 13, 771–778 (2008). https://doi.org/10.1007/s00775-008-0363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0363-x

Keywords

Navigation