Skip to main content
Log in

Solution 1H NMR study of the accommodation of the side chain of n-butyl-etiohemin-I incorporated into the active site of cyano-metmyoglobin

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In order to identify the most readily deformable portion of the heme pocket in myoglobin, equine myoglobin was reconstituted with a meso-n-butyl substituent on centrosymmetric etiohemin-I. Solution 1H NMR data for the low-spin iron(III) cyanide complex of oxidized myoglobin that include 2D nuclear Overhauser enhancement spectroscopy contacts, paramagnetic relaxation, and dipolar shifts resulting from magnetic anisotropy show that the heme binds uniquely to the iron in a manner that arranges the methyl and ethyl substituents on a given pyrrole in a clockwise manner when viewed from the proximal side, and with the n-butyl group seated at the canonical α-meso position of native protohemin-IX. The butyl group is oriented sharply toward the proximal side and its protein contacts demonstrate that it is oriented largely into the “xenon hole” in myoglobin. The location of the n-butyl group on the proximal side near the vacancies places it within the region found to be most flexible in molecular dynamics simulation. A small, counterclockwise rotation of the pyrrole N–Fe–N vector of n-butyl-etiohemin-I relative to that for native protohemin, indicated by both the prosthetic group methyl contact shift pattern and the prosthetic group contacts to heme pocket residues, is proposed to allow the xenon hole to accommodate better the n-butyl group. In contrast to previous work, which showed that a bulky polar substituent on etiohemin-I preferentially seats at the canonical γ-meso position, the nonpolar n-butyl group selects the α-meso position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DSS:

2,2-Dimethyl-2-silapentane-5-sulfonate

Mb:

Myoglobin

MetMbCN:

Cyanide complex of oxidized myoglobin

NOESY:

Nuclear Overhauser enhancement spectroscopy

TOCSY:

Total correlation spectroscopy

WEFT:

Water-elimination Fourier transform

WT:

Wild type

References

  1. Antonini E, Brunori M (1971) Hemoglobin and myoglobin and their reactions with ligands. Elsevier, North-Holland Publishing, Amsterdam

    Google Scholar 

  2. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution and pathology. Benjamin-Cummings, Menlo Park CA USA

    Google Scholar 

  3. Springer BA, Sligar SG, Olson JS, Phillips GN (1994) Chem Rev 94:699–714

    CAS  Google Scholar 

  4. Kay MS, Ramos CHI, Baldwin RL (1999) Proc Natl Acad Sci USA 96:2007–2012

    Google Scholar 

  5. Nishimura C, Dyson HJ, Wright P (2002) J Mol Biol 322:483–489

    Google Scholar 

  6. Musto R, Bigotti MG, Travaglini-Allocatelli C, Brunori M, Cutruzzolá F (2004) Biochemistry 43:230–236

    Google Scholar 

  7. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davis DD, Phillips DC (1960) Nature 185:422–427

    Google Scholar 

  8. Takano T (1977) J Mol Biol 110:569–584

    Google Scholar 

  9. Case DA, Karplus M (1979) J Mol Biol 132:343–368

    Google Scholar 

  10. Karplus M, McCammon AD (1981) CRC Crit Rev Biochem 9:293–349

    Google Scholar 

  11. Nishihara Y, Sakakura M, Kimura Y, Terazima M (2004) J Am Chem Soc 126:11877–11888

    Google Scholar 

  12. Hargrove MS, Olson JS (1996) Biochemistry 35:11310–11318

    Article  CAS  PubMed  Google Scholar 

  13. Lemberg R (1956) Rev Pure Appl Chem 6:1–23

    Google Scholar 

  14. St. Claire TN, Balch AL (1999) Inorg Chem 38:684–691

    Google Scholar 

  15. Sigman JA, Wang X, Lu Y (2001) J Am Chem Soc 123:6945–6946

    Google Scholar 

  16. Ortiz de Montellano PR, Wilks A (2001) Adv Inorg Chem 51:359–407

    Article  Google Scholar 

  17. O’Carra P, Colleran E (1969) FEBS Lett 5:295–298

    Google Scholar 

  18. Murakami T, Morishima I, Matsui T, Ozaki S-I, Hara I, Yang H-J, Watanabe Y (1999) J Am Chem Soc 121:2007–2011

    Google Scholar 

  19. Hildebrand DP, Tang H, Luo Y, Hunter CL, Smith M, Brayer GD, Mauk AG (1996) J Am Chem Soc 118:12909–12915

    Google Scholar 

  20. Brown SB, Chabot AA, Enderby EA, Nort ACT (1981) Nature 289:93–95

    Google Scholar 

  21. Tran A-T, Kalish H, Balch AL, La Mar GN (2000) J Biol Inorg Chem 5:624–633

    Google Scholar 

  22. Wang J, Li Y, Ma D, Kalish HR, Balch AL, La Mar GN (2001) J Am Chem Soc 123:8080–8088

    Google Scholar 

  23. Neya S, Funasaki N, Imai K (1989) Biochim Biophys Acta 996:226–232

    Google Scholar 

  24. Bertini I, Luchinat C (1996) Coord Chem Rev 150:1–296

    Google Scholar 

  25. La Mar GN, Satterlee JD, de Ropp JS (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrins handbook, Academic Press, San Diego, pp185–298

  26. Kalish HR, Camp JE, Stepien M, Latos-Grazynski L, Olmstead MM, Balch AL (2002) Inorg Chem 41:989–997

    Google Scholar 

  27. Teale FWJ (1959) Biochim Biophys Acta 35:543

    Google Scholar 

  28. Hauksson JB, La Mar GN, Pandey RK, Rezzano IN, Smith KM (1990) J Am Chem Soc 112:8315–8323

    Google Scholar 

  29. Gupta RK (1976) J Magn Reson 24:461–465

    Google Scholar 

  30. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546–4553

    Google Scholar 

  31. Griesinger C, Otting G, Wüthrich K, Ernst RR (1988) J Am Chem Soc 110:7870–7872

    Google Scholar 

  32. Williams G, Clayden NJ, Moore GR, Williams RJP (1985) J Mol Biol 183:447–460

    CAS  PubMed  Google Scholar 

  33. Emerson SD, La Mar GN (1990) Biochemistry 29:1556–1566

    CAS  PubMed  Google Scholar 

  34. Nguyen BD, Xia Z, Yeh DC, Vyas K, Deaguero H, La Mar G (1999) J Am Chem Soc 121:208–217

    Google Scholar 

  35. Thériault Y, Pochapsky TC, Dalvit C, Chiu ML, Sligar SG, Wright PE (1994) J Biomol NMR 4:491–504

    Google Scholar 

  36. Emerson SD, La Mar GN (1990) Biochemistry 29:1545–1555

    Google Scholar 

  37. Qin J, La Mar GN (1992) J Biomol NMR 2:597–618

    Google Scholar 

  38. Rajarathnam K, Qin J, La Mar GN, Chiu ML, Sligar SG (1994) Biochemistry 33:5493–5501

    Google Scholar 

  39. Wu Y, Chien EYT, Sligar SG, La Mar GN (1998) Biochemistry 37:6979–6990

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen BD, Zhao X, Vyas K, La Mar GN, Lile RA, Brucker EA, Phillips GN Jr, Olson JS, Wittenberg JB (1998) J Biol Chem 273:9517–9526

    Google Scholar 

  41. La Mar GN, Walker FA (1978) In: Dolphin D (ed) The porphyrins. Academic Press, NY, pp61–157

  42. Walker FA (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic Press, Boston, pp1–183

  43. Kuriyan J, Wilz S, Karplus M, Petsko GA (1986) J Mol Biol 192:133–154

    Google Scholar 

  44. Shokhirev NV, Walker FA (1998) J Biol Inorg Chem 3:581–594

    Article  CAS  Google Scholar 

  45. Song X-Z, Jentzen W, Jia S-L, Jaquinod L, Nurco DJ, Medforth CJ, Smith KM, Shelnutt JA (1996) J Am Chem Soc 118:12975–12988

    Google Scholar 

  46. Song X-Z, Jaquinod L, Jentzen W, Nurco DJ, Jia S-L, Khoury RG, Ma J-G, Medforth CJ, Smith KM, Shelnutt JA (1998) Inorg Chem 37:2009–2019

    Google Scholar 

  47. Song X-Z, Jentzen W, Jaquinod L, Khoury RG, Medforth CJ, Jia S-L, Ma J-G, Smith KM, Shelnutt JA (1998) Inorg Chem 37:2117–2128

    Google Scholar 

  48. Shelnutt JA, Song X-Z, Ma J-G, Jia S-L, Jentzen W, Medforth CJ, (1998) Chem Soc Rev 27:31–41

    Google Scholar 

  49. Hauksson JB, La Mar GN, Pande U, Pandey RK, Parish DW, Smith KM (1990) Biochim Biophys Acta 1041:186–194

    Google Scholar 

  50. La Mar GN, Hauksson JB, Dugad LB, Liddell PA, Venkataramana N, Smith KM (1991) J Am Chem Soc 113:1544–1550

    Google Scholar 

  51. Tilton RF Jr, Kuntz IDJ, Petsko GA (1984) Biochemistry 23:2849–2857

    Google Scholar 

  52. Osterman A, Washipky R, Parak FG, Neinhaus GU (2000) Nature 404:205–208

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institutes of Health, GM 62830 (G.N.L.), GM 26226 (A.L.B.), and HL 16087 (G.N.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd N. La Mar.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarenko, V., Wang, J., Kalish, H. et al. Solution 1H NMR study of the accommodation of the side chain of n-butyl-etiohemin-I incorporated into the active site of cyano-metmyoglobin. J Biol Inorg Chem 10, 283–293 (2005). https://doi.org/10.1007/s00775-005-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0640-x

Keywords

Navigation