Skip to main content
Log in

The 40s Ω-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

The structural and redox properties of a non-covalent complex reconstituted upon mixing two non-contiguous fragments of horse cytochrome c, the residues 1–38 heme-containing N-fragment with the residues 57–104 C-fragment, have been investigated. With respect to native cyt c, the complex lacks a segment of 18 residues, corresponding, in the native protein, to an omega (Ω)-loop region. The fragment complex shows compact structure, native-like α-helix content but a less rigid atomic packing and reduced stability with respect to the native protein. Structural heterogeneity is observed at pH 7.0, involving formation of an axially misligated low-spin species and consequent partial displacement of Met80 from the sixth coordination position of the heme-iron. Spectroscopic data suggest that a lysine (located in the Met80-containing loop, namely Lys72, Lys73, or Lys79) replaces the methionine residue. The residues 1–38/57–104 fragment complex shows an unusual biphasic alkaline titration characterized by a low (pKa1=6.72) and a high pKa-associated state transition (pKa2=8.56); this behavior differs from that of native cyt c, which shows a monophasic alkaline transition (pKa=8.9). The data indicate that the 40s Ω-loop plays an important role in the stability of cyt c and in ensuring a correct alkaline conformational transition of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

CV:

cyclic voltammetry

cyt c:

cytochrome c

RR:

resonance Raman

References

  1. Kuwajima K (1989) Proteins 6:87–103

    CAS  PubMed  Google Scholar 

  2. Creighton TE (1990) Biochem J 270:1–15

    CAS  PubMed  Google Scholar 

  3. Kim PS, Baldwin RL (1990) Annu Rev Biochem 59:631–660

    Article  CAS  PubMed  Google Scholar 

  4. Ptitsyn OB (1992) In: Creighton TE (ed) Protein folding. Freeman, New York, pp 243–300

  5. Privalov PL (1996) J Mol Biol 258:707–725

    Article  CAS  PubMed  Google Scholar 

  6. Fontana A, Zambonin M, De Filippis V, Bosco M, Polverino de Laureto P (1995) FEBS Lett 362:266–270

    Article  CAS  PubMed  Google Scholar 

  7. Moore GR, Pettigrew GW (1990) Cytochromes c. Evolutionary, structural and physiological aspects. Springer, Berlin Heidelberg New York

  8. Sosnick TR, Mayne L, Hiller R, Englander SW (1994) Nat Struct Biol 1:149–156

    Article  CAS  PubMed  Google Scholar 

  9. Colón W, Roder H (1996) Nat Struct Biol 3:1019–1025

    Article  PubMed  Google Scholar 

  10. Takahashi S, Yeh S-R, Das TK, Chan C-K, Gottfried DS, Rousseau DL (1997) Nat Struct Biol 4:44–50

    Article  CAS  PubMed  Google Scholar 

  11. Yeh, S-R, Takahashi S, Fan B, Rousseau DL (1997) Nat Struct Biol 4:51–56

    Article  CAS  PubMed  Google Scholar 

  12. Bai Y (1999) Proc Natl Acad Sci USA 96:477–480

    Article  CAS  PubMed  Google Scholar 

  13. Pierce MM, Nall BT (2000) J Mol Biol 298:955–969

    Article  CAS  PubMed  Google Scholar 

  14. Jeng MF, Englander SW (1991) J Mol Biol 221:1045–1061

    Article  CAS  PubMed  Google Scholar 

  15. Russell BS, Melenkivitz R, Bren K (2000) Proc Natl Acad Sci USA 97:8312–8317

    Article  CAS  PubMed  Google Scholar 

  16. Jordan T, Eads JC, Spiro TG (1995) Protein Sci 4:716–728

    CAS  PubMed  Google Scholar 

  17. Oellerich S, Wackerbarth H, Hildebrandt P (2002) J Phys Chem B 106:6566–6580

    Article  CAS  Google Scholar 

  18. Sinibaldi F, Howes BD, Smulevich G, Ciaccio C, Coletta M, Santucci R (2003) J Biol Inorg Chem 8:663–670

    Article  CAS  PubMed  Google Scholar 

  19. Goto Y, Takahashi N, Fink AL (1990) Biochemistry 29:3480–3488

    CAS  PubMed  Google Scholar 

  20. Marmorino JL, Pielak GJ (1995) Biochemistry 34:3140–3143

    CAS  PubMed  Google Scholar 

  21. Santucci R, Bongiovanni C, Mei G, Ferri T, Polizio F, Desideri A (2000) Biochemistry 39:12632–12638

    Article  CAS  PubMed  Google Scholar 

  22. Wilgus H, Ranweiler JS, Wilson GS, Stellwagen E (1978) J Biol Chem 253:3265–3272

    CAS  PubMed  Google Scholar 

  23. Wallace CJ (1987) J Biol Chem 262:16767–16770

    CAS  PubMed  Google Scholar 

  24. Fisher A, Taniuchi H (1992) Arch Biochem Biophys 296:1–16

    CAS  PubMed  Google Scholar 

  25. Kang X, Carey J (1999) J Mol Biol 285:463–468

    Article  CAS  PubMed  Google Scholar 

  26. Yokota A, Takenaka H, Oh T, Noda Y, Segawa S-I (1998) Protein Sci 7:1717–1727

    CAS  PubMed  Google Scholar 

  27. Santucci R, Fiorucci L, Sinibaldi F, Polizio F, Desideri A, Ascoli F (2000) Arch Biochem Biophys 379:331–336

    Article  CAS  PubMed  Google Scholar 

  28. Santoni E, Scatragli S, Sinibaldi F, Fiorucci L, Santucci R, Smulevich G (2004) J Inorg Biochem 98:1067–1077

    Article  CAS  PubMed  Google Scholar 

  29. Sinibaldi F, Fiorucci L, Mei G, Ferri T, Desideri A, Ascoli F, Santucci R (2001) Eur J Biochem 268:4537–4543

    Article  CAS  PubMed  Google Scholar 

  30. Bushnell GW, Louie GV, Brayer GD (1990) J Mol Biol 214:585–595

    CAS  PubMed  Google Scholar 

  31. Leszcynski JF, Rose GD (1986) Science 234:849–855

    PubMed  Google Scholar 

  32. Pettigrew GW, Moore GR (1987) Cytochromes c. Biological aspects. Springer, Berlin Heidelberg New York

  33. Jemmerson R, Liu J, Hausauer D, Lam K-P, Mondino A, Nelson RD (1999) Biochemistry 38:3599–3609

    Article  CAS  PubMed  Google Scholar 

  34. Sinibaldi F, Piro MC, Howes BD, Smulevich G, Ascoli F, Santucci R (2003) Biochemistry 42:7604–7610

    Article  CAS  PubMed  Google Scholar 

  35. Hoang L, Maity H, Krishna MMG, Lin Y, Englander SW (2003) J Mol Biol 331:37–43

    Article  CAS  PubMed  Google Scholar 

  36. Korszun ZN, Salemme FR (1977) Proc Natl Acad Sci USA 74:5244–5247

    CAS  PubMed  Google Scholar 

  37. Eddowes MJ, Hill HAO (1979) J Am Chem Soc 101:4461–44641

    CAS  Google Scholar 

  38. Berghuis AM, Brayer GD (1992) J Mol Biol 223:959–976

    CAS  PubMed  Google Scholar 

  39. Hoard JL (1973) Ann NY Acad Sci 206:18–31

    CAS  PubMed  Google Scholar 

  40. Spaulding LD, Chang CC, Yu NT, Felton RH (1975) J Am Chem Soc 97:2517–2525

    CAS  Google Scholar 

  41. Choi S, Spiro TG, Langry KC, Smith KM, Budd DL, La Mar GN (1982) J Am Chem Soc 104:4345–4351

    CAS  Google Scholar 

  42. Sparks LD, Anderson KK, Medforth CJ, Smith K, Shelnutt JA (1994) Inorg Chem 33:2297–2302

    CAS  Google Scholar 

  43. Indiani C, De Sanctis G, Neri F, Santos H, Smulevich G, Coletta M (2000) Biochemistry 39: 8234–8242

    Article  CAS  PubMed  Google Scholar 

  44. Dopner S, Hildebrandt P, Rosell FI, Mauk AG (1998) J Am Chem Soc 120:11246–11255

    Article  Google Scholar 

  45. Hu S, Morris IK, Singh JP, Smith KM, Spiro TG (1993) J Am Chem Soc 115:12446–12458

    CAS  Google Scholar 

  46. Smulevich G, Bjerrum MJ, Gray HB, Spiro TG (1994) Inorg Chem 33:4629–4634

    CAS  Google Scholar 

  47. Zheng J, Ye S, Lu T, Cotton TM, Chumanov G (2000) Biopolymers (Biospectroscopy) 57:77–84

    Google Scholar 

  48. Clark WM (1972) Oxidation-reduction potentials of organic systems. Krieger, Huntington, NY, USA

  49. Santucci R, Reinhard H, Brunori M (1988) J Am Chem Soc 110:8536–8537

    CAS  Google Scholar 

  50. Raphael AL, Gray HB (1989) Proteins 6:338–340

    CAS  PubMed  Google Scholar 

  51. Raphael AL, Gray HB (1991) J Am Chem Soc 113:1038–1040

    CAS  Google Scholar 

  52. Pielak GJ, Oikawa K, Mauk AG, Smith M, Kay CM (1986) J Am Chem Soc 108:2724–2727

    CAS  Google Scholar 

  53. Ascoli F, Santucci R (1996) J Inorg Biochem 68:211–214

    Google Scholar 

  54. Wilson MT, Greenwood C (1996) In: Scott RA, Mauk AG (eds), Cytochrome c. A multidisciplinary approach. University Science Books, Sausalito, Calif., USA, pp 611–634

  55. Stellwagen E, Cass R (1974) Biochem Biophys Res Commun 60:371–375

    CAS  PubMed  Google Scholar 

  56. Pace CN (1975) CRC Crit Rev Biochem: 1–43

    Google Scholar 

  57. Myers JK, Pace CN, Scholtz JM (1995) Protein Sci 4:2138–2148

    CAS  PubMed  Google Scholar 

  58. Ferri T, Poscia A, Ascoli F, Santucci R (1996) Biochim Biophys Acta 1298:102–108

    Article  CAS  PubMed  Google Scholar 

  59. Nelson CJ, Bowler BE (2000) Biochemistry 39:13584–13594

    Article  CAS  PubMed  Google Scholar 

  60. Neri F, Indiani C, Welinder KG, Smulevich G (1998) Eur J Biochem 251:830–838

    Article  CAS  PubMed  Google Scholar 

  61. Wallace CJ, Proudfoot AE (1987) Biochem J 245:773–779

    CAS  PubMed  Google Scholar 

  62. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank P. Sarti and E. Forte (Dipartimento di Biochimica, Università di Roma “La Sapienza”) for assistance in the polarographic measurements, and E. Schininà (Dipartimento di Biochimica, Università di Roma “La Sapienza”) for mass spectrometric measurements. This research was funded in part by grants from the Italian MIUR (COFIN 2001 031798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Santucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caroppi, P., Sinibaldi, F., Santoni, E. et al. The 40s Ω-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c. J Biol Inorg Chem 9, 997–1006 (2004). https://doi.org/10.1007/s00775-004-0601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0601-9

Keywords

Navigation