Skip to main content

Advertisement

Log in

Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The Fet3 protein in Saccharomyces cerevisiae is a multicopper oxidase tethered to the outer surface of the yeast plasma membrane. Fet3p catalyzes the oxidation of Fe2+ to Fe3+; this ferroxidation reaction is an obligatory first step in high-affinity iron uptake through the permease Ftr1p. Here, kinetic analyses of several Fet3p mutants identify residues that contribute to the specificity that Fet3p has for Fe2+, one of which is essential also to the coupling of the ferroxidase and uptake processes. The spectral and kinetic properties of the D278A, E185D and A, Y354F and A, and E185A/Y354A mutants of a soluble form of Fet3p showed that all of the mutants exhibited the normal absorbance at 330 nm and 608 nm due to the type 3 and type 1 copper sites in Fet3p, respectively. The EPR spectra of the mutants were also equivalent to wild-type, showing that the type 1 and type 2 Cu(II) sites in the proteins were not perturbed. The only marked kinetic defects measured in vitro were increases in K M for Fe2+ exhibited by the D278A, E185A, Y354A, and E185A/Y354A mutants. These results suggest that these three residues contribute to the ferroxidase specificity site in Fet3p. In vivo analysis of these mutant proteins in their membrane-bound form showed that only E185 mutants exhibited kinetic defects in 59Fe uptake. For the Fet3p(E185D) mutant, K M for iron was 300-fold greater than the wild-type K M, while Fet3p(E185A) was completely inactive in support of iron uptake. In situ fluorescence demonstrated that all of the mutant Fet3 proteins, in complex with an Ftr1p:YFP fusion protein, were trafficked normally to the plasma membrane. These results suggest that E185 contributes to Fe2+ binding to Fet3p and to the subsequent trafficking of the Fe3+ produced to Ftr1p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4A–D.
Fig. 5A, B.
Fig. 6A, B.

Similar content being viewed by others

Abbreviations

hCp:

human ceruloplasmin

HQ:

hydroquinone

Lac:

laccase

MCO:

multicopper oxidase

MES:

2-(N-morpholino)ethanesulfonic acid

PD:

p-phenylenediamine

YFP:

yellow fluorescent protein

References

  1. Kosman DJ (2003) Mol Microbiol 47:1185–1197

    Article  CAS  PubMed  Google Scholar 

  2. Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR (1998) J Biol Chem 273:23716–23721

    Article  CAS  PubMed  Google Scholar 

  3. Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Proc Natl Acad Sci USA 89:3869–3873

    CAS  PubMed  Google Scholar 

  4. Georgatsou E, Alexandraki D (1999) Yeast 15:573–584

    Article  CAS  PubMed  Google Scholar 

  5. Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) J Biol Chem 269:26092–26099

    CAS  PubMed  Google Scholar 

  6. Dix D, Bridgham J, Broderius M, Eide D (1997) J Biol Chem 272:11770–11777

    Article  CAS  PubMed  Google Scholar 

  7. Hassett R, Dix DR, Eide DJ, Kosman DJ (2000) Biochem J 351:477–484

    Article  CAS  PubMed  Google Scholar 

  8. de Silva DM, Askwith CC, Eide D, Kaplan J (1995) J Biol Chem 270:1098–1101

    Article  PubMed  Google Scholar 

  9. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) Science 271:1552–1557

    CAS  PubMed  Google Scholar 

  10. Yuan DS, Dancis A, Klausner RD (1997) J Biol Chem 272:25787–25793

    Article  CAS  PubMed  Google Scholar 

  11. Harris ZL, Klomp LWJ, Gitlin JD (1998) Am J Clin Nutr 67:972S–977S

    CAS  PubMed  Google Scholar 

  12. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Nat Genet 21:195–199

    Article  CAS  PubMed  Google Scholar 

  13. Frieden E, Osaki S (1974) Adv Exp Med Biol 48:235–265

    CAS  PubMed  Google Scholar 

  14. Hassett RF, Yuan DS, Kosman DJ (1998) J Biol Chem 273:23274–23282

    Article  CAS  PubMed  Google Scholar 

  15. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    CAS  PubMed  Google Scholar 

  16. Blackburn NJ, Ralle M, Hassett R, Kosman DJ (2000) Biochemistry 39:2316–2324

    Article  CAS  PubMed  Google Scholar 

  17. Machonkin TE, Quintanar L, Palmer AE, Hassett R, Severance S, Kosman DJ, Solomon EI (2001) J Am Chem Soc 123:5507–5517

    Article  CAS  PubMed  Google Scholar 

  18. Palmer AE, Quintanar L, Severance S, Wang T-Z, Kosman DJ, Solomon EI (2002) Biochemistry 41:6438–6448

    Article  CAS  PubMed  Google Scholar 

  19. Severance S, Kosman DJ (2003) J Biol Chem (in press)

  20. Kosman DJ (2002) In: Valentine JS, Gralla E (eds) Advances in protein chemistry. Elsevier, New York, pp 221–269

  21. Lindley P, Card G, Zaitseva I, Zaitsev V, Reinhammar B, Selin-Lindgren E, Yoshida K (1997) J Biol Inorg Chem 2:454–463

    Article  CAS  Google Scholar 

  22. Askwith CC, Kaplan J (1998) J Biol Chem 273:22415–22419

    Article  CAS  PubMed  Google Scholar 

  23. Bonaccorsi di Patti MC, Felice MR, Camuti AP, Lania A, Musci G (2000) FEBS Lett 472:283–286

    Article  PubMed  Google Scholar 

  24. Bonaccorsi di Patti MC, Paronetto MP, Dolci V, Felice MR, Lania A, Musci G (2001) FEBS Lett 508:475–478

    Article  PubMed  Google Scholar 

  25. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) EMBO J 15:3377–3384

    CAS  PubMed  Google Scholar 

  26. Sikorski RS, Heiter P (1989) Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  27. Hassett R, Kosman DJ (1995) J Biol Chem 270:128–134

    Article  CAS  PubMed  Google Scholar 

  28. Bradford MM (1976) Anal Chem 72:248–254

    Article  CAS  Google Scholar 

  29. Bonaccorsi di Patti MC, Pascarella S, Catalucci D, Calabrese L (1999) Prot Eng 12:895–897

    Article  Google Scholar 

  30. de Silva D, Davis-Kaplan S, Fergestad J, Kaplan J (1997) J Biol Chem 272:14208–14213

    Article  PubMed  Google Scholar 

  31. Young SN, Curzon G (1972) Biochem J 129:273–283

    CAS  PubMed  Google Scholar 

  32. Huber CT, Frieden E (1970) J Biol Chem 245:3973–3978

    CAS  PubMed  Google Scholar 

  33. Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Proc Natl Acad Sci USA 96:10812–10817

    Article  CAS  PubMed  Google Scholar 

  34. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) Mol Cell 5:299–309

    CAS  PubMed  Google Scholar 

  35. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) Cell 76:403–410

    CAS  PubMed  Google Scholar 

  36. Zaitseva I, Zaitsev V, Card G, Moshkov K, Bax B, Ralph A, Lindley P (1996) J Biol Inorg Chem 1:15–23

    CAS  Google Scholar 

  37. Brown MA, Stenberg LM, Mauk AG (2002) FEBS Lett 520:8–12

    Article  CAS  PubMed  Google Scholar 

  38. Zaitsev VN, Zaitseva I, Papiz M, Lindley PF (1999) J Biol Inorg Chem 4:579–587

    Article  CAS  PubMed  Google Scholar 

  39. Zaric SD, Popovic DM, Knapp E-W (2000) Chem Eur J 6:3935–3942

    Article  CAS  Google Scholar 

  40. Dougherty DA (1996) Science 271:163–168

    CAS  PubMed  Google Scholar 

  41. Horovitz A, Serrano L, Fersht AR (1991) J Mol Biol 219:5–9

    CAS  PubMed  Google Scholar 

  42. Huffman DL, O'Halloran TV (2001) Annu Rev Biochem 70:677–701

    Article  CAS  PubMed  Google Scholar 

  43. Rosenzweig AC (2001) Acc Chem Res 34:119–128

    Article  CAS  PubMed  Google Scholar 

  44. Huffman DL, O'Halloran TV (2000) J Biol Chem 275:18611–18614

    Article  CAS  PubMed  Google Scholar 

  45. Anderson KS (1999) Methods Enzymol 308:111–145

    CAS  PubMed  Google Scholar 

  46. Chidambaram MV, Barnes G, Frieden E (1983) FEBS Lett 159:137–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Wade Sigurdson for his invaluable assistance in the use of confocal fluorescent microscopy to analyze the targeting of the Fet3p/Ftr1p complex to the yeast plasma membrane. This research was supported by National Institutes of Health grant DK53820 (D.J.K.) and grant DK31450 (E.I.S.) from the US Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Kosman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, TP., Quintanar, L., Severance, S. et al. Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae . J Biol Inorg Chem 8, 611–620 (2003). https://doi.org/10.1007/s00775-003-0456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0456-5

Keywords

Navigation