Skip to main content

Advertisement

Log in

Adiponectin overexpression promotes fracture healing through regulating the osteogenesis and adipogenesis balance in osteoporotic mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Osteoporosis invariably manifests as loss of bone, which is replaced by adipose tissue; this can easily lead to fractures, accompanied by delayed and poor healing. Adiponectin (APN) balances osteogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs). Therefore, this study explored whether adiponectin promotes bone fracture healing by regulating the balance between osteogenesis and adipogenesis.

Materials and methods

We used adenovirus overexpression vectors carrying APN (Ad-APN-GFP) to treat ovariectomized (OVX) mouse BMSCs and osteoporotic bone fractures to investigate the role of APN in bone microenvironment metabolism in osteoporotic fractures. We subsequently established an OVX mice and bone fracture model using Ad-APN-GFP treatment to investigate whether APN could promote bone fracture healing in osteoporotic mice.

Results

The experimental results showed that APN is a critical molecule in diverse differentiation directions in OVX mouse BMSCs, with pro-osteogenesis and anti-adipogenesis properties. Importantly, our study revealed that Ad-APN-GFP treatment facilitates bone generation and healing around the osteoporotic fracture ends. Moreover, we identified that Sirt1 and Wnt signaling were closely related to the pro-osteogenesis and anti-adipogenesis commitment of APN in OVX mouse BMSCs and femoral tissues.

Conclusion

We demonstrated that APN overexpression facilitates bone fracture healing in osteoporosis. Furthermore, APN overexpression promoted bone formation in OVX mouse BMSCs and bone fracture ends by regulating the balance between osteogenesis and adipogenesis both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwartz AV (2015) Marrow fat and bone: review of clinical findings. Front Endocrinol (Lausanne) 6:40. https://doi.org/10.3389/fendo.2015.00040

    Article  CAS  PubMed  Google Scholar 

  2. Khosla S, Hofbauer LC (2017) Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol 5:898–907. https://doi.org/10.1016/s2213-8587(17)30188-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li GW, Xu Z, Chen QW, Tian YN, Wang XY et al (2014) Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water-fat separation. Clin Radiol 69:254–262. https://doi.org/10.1016/j.crad.2013.10.005

    Article  PubMed  Google Scholar 

  4. Kühn JP, Hernando D, Meffert PJ, Reeder S, Hosten N et al (2013) Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol 23:3432–3439. https://doi.org/10.1007/s00330-013-2950-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Muruganandan S, Roman AA, Sinal CJ (2009) Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program. Cell Mol Life Sci 66:236–253. https://doi.org/10.1007/s00018-008-8429-z

    Article  CAS  PubMed  Google Scholar 

  6. Zhi F, Ding Y, Wang R, Yang Y, Luo K et al (2021) Exosomal hsa_circ_0006859 is a potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging miR-431-5p. Stem Cell Res Ther 12:157. https://doi.org/10.1186/s13287-021-02214-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao HJ, Li CR, Wang LY, Ziadlou R, Grad S et al (2019) Effect and mechanism of psoralidin on promoting osteogenesis and inhibiting adipogenesis. Phytomedicine 61:152860. https://doi.org/10.1016/j.phymed.2019.152860

    Article  CAS  PubMed  Google Scholar 

  8. Rodríguez JP, Montecinos L, Ríos S, Reyes P, Martínez J (2000) Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem 79:557–565. https://doi.org/10.1002/1097-4644(20001215)79:4%3c557::aid-jcb40%3e3.0.co;2-h

    Article  PubMed  Google Scholar 

  9. Patsch JM, Li X, Baum T, Yap SP, Karampinos DC et al (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28:1721–1728. https://doi.org/10.1002/jbmr.1950

    Article  PubMed  Google Scholar 

  10. Chen P, Hu B, Xie LQ, Jiang TJ, Xia ZY et al (2021) Scara3 regulates bone marrow mesenchymal stem cell fate switch between osteoblasts and adipocytes by promoting Foxo1. Cell Prolif 54:e13095. https://doi.org/10.1111/cpr.13095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N et al (2006) Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 99:196–208. https://doi.org/10.1002/jcb.20890

    Article  CAS  PubMed  Google Scholar 

  12. Williams GA, Wang Y, Callon KE, Watson M, Lin JM et al (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150:3603–3610. https://doi.org/10.1210/en.2008-1639

    Article  CAS  PubMed  Google Scholar 

  13. Zhao L, Fan C, Zhang Y, Yang Y, Wang D et al (2016) Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling. Sci Rep 6:28752. https://doi.org/10.1038/srep28752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin YY, Chen CY, Chuang TY, Lin Y, Liu HY et al (2014) Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3β/β-catenin signaling in mice. Bone 64:147–154. https://doi.org/10.1016/j.bone.2014.03.051

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Park OJ, Kim J, Han S, Yang Y et al (2019) Adiponectin deficiency triggers bone loss by up-regulation of osteoclastogenesis and down-regulation of osteoblastogenesis. Front Endocrinol (Lausanne) 10:815. https://doi.org/10.3389/fendo.2019.00815

    Article  PubMed  Google Scholar 

  16. Satoh H, Nguyen MT, Miles PD, Imamura T, Usui I et al (2004) Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J Clin Investig 114:224–231. https://doi.org/10.1172/jci20785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yin G, Chen J, Wei S, Wang H, Chen Q et al (2015) Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats. Gene Ther 22:636–644. https://doi.org/10.1038/gt.2015.34

    Article  CAS  PubMed  Google Scholar 

  18. Yang S, Liu H, Liu Y, Liu L, Zhang W et al (2019) Effect of adiponectin secreted from adipose-derived stem cells on bone-fat balance and bone defect healing. J Tissue Eng Regener Med 13:2055–2066. https://doi.org/10.1002/term.2915

    Article  CAS  Google Scholar 

  19. Qi M, Zhang L, Ma Y, Shuai Y, Li L et al (2017) Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis. Theranostics 7:4498–4516. https://doi.org/10.7150/thno.17949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu L, Tu Q, Han Q, Zhang L, Sui L et al (2015) Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells 33:240–252. https://doi.org/10.1002/stem.1844

    Article  CAS  PubMed  Google Scholar 

  21. Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915. https://doi.org/10.1016/j.cmet.2013.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohamed MK, Abdel-Rahman AA (2000) Effect of long-term ovariectomy and estrogen replacement on the expression of estrogen receptor gene in female rats. Eur J Endocrinol 142:307–314. https://doi.org/10.1530/eje.0.1420307

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura Y, Nakano M, Suzuki T, Sato J, Kato H et al (2020) Two adipocytokines, leptin and adiponectin, independently predict osteoporotic fracture risk at different bone sites in postmenopausal women. Bone 137:115404. https://doi.org/10.1016/j.bone.2020.115404

    Article  CAS  PubMed  Google Scholar 

  24. Lewis JW, Edwards JR, Naylor AJ, McGettrick HM (2021) Adiponectin signalling in bone homeostasis, with age and in disease. Bone Res 9:1. https://doi.org/10.1038/s41413-020-00122-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naot D, Musson DS, Cornish J (2017) The activity of adiponectin in bone. Calcif Tissue Int 100:486–499. https://doi.org/10.1007/s00223-016-0216-5

    Article  CAS  PubMed  Google Scholar 

  26. Liu H, Liu S, Ji H, Zhao Q, Liu Y et al (2021) An adiponectin receptor agonist promote osteogenesis via regulating bone-fat balance. Cell Prolif 54:e13035. https://doi.org/10.1111/cpr.13035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Z, Tang J, Li Y, Wang Y, Guo Y et al (2020) AdipoRon promotes diabetic fracture repair through endochondral ossification-based bone repair by enhancing survival and differentiation of chondrocytes. Exp Cell Res 387:111757. https://doi.org/10.1016/j.yexcr.2019.111757

    Article  CAS  PubMed  Google Scholar 

  28. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH et al (2017) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiatry 22:407–416. https://doi.org/10.1038/mp.2016.23

    Article  CAS  PubMed  Google Scholar 

  30. Bäckesjö CM, Li Y, Lindgren U, Haldosén LA (2006) Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 21:993–1002. https://doi.org/10.1359/jbmr.060415

    Article  PubMed  Google Scholar 

  31. Zainabadi K, Liu CJ, Caldwell ALM, Guarente L (2017) SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis. PLoS ONE 12:e0185236. https://doi.org/10.1371/journal.pone.0185236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edwards JR, Perrien DS, Fleming N, Nyman JS, Ono K et al (2013) Silent information regulator (Sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling. J Bone Miner Res 28:960–969. https://doi.org/10.1002/jbmr.1824

    Article  CAS  PubMed  Google Scholar 

  33. Yao H, Yao Z, Zhang S, Zhang W, Zhou W (2018) Upregulation of SIRT1 inhibits H2O2-induced osteoblast apoptosis via FoxO1/β-catenin pathway. Mol Med Rep 17:6681–6690. https://doi.org/10.3892/mmr.2018.8657

    Article  CAS  PubMed  Google Scholar 

  34. Goldring SR, Goldring MB (2007) Eating bone or adding it: the Wnt pathway decides. Nat Med 13:133–134. https://doi.org/10.1038/nm0207-133

    Article  CAS  PubMed  Google Scholar 

  35. Holloway KR, Calhoun TN, Saxena M, Metoyer CF, Kandler EF et al (2010) SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling. Proc Natl Acad Sci USA 107:9216–9221. https://doi.org/10.1073/pnas.0911325107

    Article  PubMed  PubMed Central  Google Scholar 

  36. Simic P, Zainabadi K, Bell E, Sykes DB, Saez B et al (2013) SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin. EMBO Mol Med 5:430–440. https://doi.org/10.1002/emmm.201201606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou Y, Zhou Z, Zhang W, Hu X, Wei H et al (2015) SIRT1 inhibits adipogenesis and promotes myogenic differentiation in C3H10T1/2 pluripotent cells by regulating Wnt signaling. Cell Biosci 5:61. https://doi.org/10.1186/s13578-015-0055-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81970917 and 82001018) and the Research and Develop Program, West China Hospital of Stomatology Sichuan University (RD-03-202102). The authors would like to thank the State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases of Sichuan University West China Hospital of Stomatology for their assistance with μCT analysis, animal surgeries experiments, staining slices, and other experiments.

Funding

Funding was provided by Research and Develop Program, West China Hospital of Stomatology Sichuan University (Grant no. RD-03-202102) and National Natural Science Foundation of China (Grant nos. 81970917, 82001018).

Author information

Authors and Affiliations

Authors

Contributions

EL: methodology, validation, investigation, and writing—review and editing and funding acquisition. JZ: conceptualization, methodology, validation, formal analysis, investigation, writing—original draft and review and editing, visualization, supervision, and project administration. SL, ZH: methodology, resources, supervision, and writing—review and editing. HL, YL, PH, ZL, JX: methodology, validation, investigation, and writing—review and editing.

Corresponding author

Correspondence to En Luo.

Ethics declarations

Conflict of interest

The authors declared that there are no competing interests.

Ethical approval

The Ethics Review Committee for Animal Experimentation of West China Hospital of Stomatology Sichuan University approved the experimental protocol of this study. All animal experiments were conducted in accordance with the Institutional principles for the concern and use of animals. This study does not involve human body and clinical study.

Informed consent

Informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 29193 KB)

Supplementary file2 (DOCX 17 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, S., He, Z. et al. Adiponectin overexpression promotes fracture healing through regulating the osteogenesis and adipogenesis balance in osteoporotic mice. J Bone Miner Metab 41, 457–469 (2023). https://doi.org/10.1007/s00774-023-01420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01420-3

Keywords

Navigation