Skip to main content

Advertisement

Log in

Extracellular vesicles in bone homeostasis: key roles of physiological and pathological conditions

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are small particles with lipid bilayer membranes that are secreted by all cell types and are widely known as crucial intercellular communication mediators, shuttling biologically active molecules. The bone is a typically preferred site of cancer metastasis due to its unique cellular compositions and dynamics. Bone cell-derived EVs serve as regulators that orchestrate harmonious bone homeostasis. Cancer cells secrete specific EVs in a series of the bone metastatic process to dominate the bone microenvironment. Additionally, cancer cell-related EVs contribute to pre-metastatic niche formation, bone homeostasis disruption, and tumor bone progression and survival. Here, we investigated recent studies on EV-mediated crosstalk in the bone tumor microenvironment. Furthermore, this review aimed to elucidate the EV-based therapeutic perspectives for bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573. https://doi.org/10.1016/S0140-6736(00)49915-0

    Article  Google Scholar 

  2. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912. https://doi.org/10.1038/onc.2008.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. György B, Szabó TG, Pásztói M, Pál Z, Misják P et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688. https://doi.org/10.1007/s00018-011-0689-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172. https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  PubMed  Google Scholar 

  5. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ et al (2007) Exosome-mediated transfer of MRNAs and MicroRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  6. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452. https://doi.org/10.1074/jbc.M110.107821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, Van Eijndhoven MAJ, Hopmans ES et al (2010) Functional delivery of viral MiRNAs via exosomes. Proc Natl Acad Sci USA 107:6328–6333. https://doi.org/10.1073/pnas.0914843107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Liu D, Chen X, Li J, Li L et al (2010) Secreted monocytic MiR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144. https://doi.org/10.1016/j.molcel.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  9. Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328:679–687. https://doi.org/10.1016/j.bbrc.2004.11.070

    Article  CAS  PubMed  Google Scholar 

  10. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594. https://doi.org/10.1002/(sici)1097-0142(19971015)80:8+%3c1588::aid-cncr9%3e3.0.co;2-g

    Article  CAS  PubMed  Google Scholar 

  11. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Witwer KW, Théry C (2019) Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell Vesicles 8:1. https://doi.org/10.1080/20013078.2019.1648167

    Article  Google Scholar 

  13. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD et al (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kowal J, Arras G, Colombo M, Jouve M, Morath JP et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113(8):E968–77. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willms E, Cabañas C, Mäger I, Wood MJA, Vader P (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:738. https://doi.org/10.3389/fimmu.2018.00738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7:789–804. https://doi.org/10.7150/thno.18133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M et al (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies microvesicles and exosomes. J Extracell Vesicles 12:2. https://doi.org/10.3402/jev.v2i0.20677

    Article  CAS  Google Scholar 

  18. Andreu Z, Yáñez-Mó M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:1–12. https://doi.org/10.3389/fimmu.2014.00442

    Article  CAS  Google Scholar 

  19. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131. https://doi.org/10.2215/CJN.04151206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118:3820–3828. https://doi.org/10.1172/JCI36479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106. https://doi.org/10.1038/nri1779

    Article  CAS  PubMed  Google Scholar 

  22. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  23. Salhotra A, Shah HN, Levi B, Longaker MT (2020) Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 21:696–711. https://doi.org/10.1038/s41580-020-00279-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hughes DE, Salter DM, Dedhar S, Simpson R (1993) Integrin expression in human bone. J Bone Miner Res 8:527–533. https://doi.org/10.1002/JBMR.5650080503

    Article  CAS  PubMed  Google Scholar 

  25. Khosla S (2001) Minireview: The OPG/RANKL/RANK system. Endocrinology 142:5050–5055. https://doi.org/10.1210/endo.142.12.8536

    Article  CAS  PubMed  Google Scholar 

  26. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146. https://doi.org/10.1016/J.ABB.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234. https://doi.org/10.1038/nm.2452

    Article  CAS  PubMed  Google Scholar 

  28. Sigl V, Jones LP, Penninger JM (2016) RANKL/RANK: from bone loss to the prevention of breast cancer. Open Biol 6(11):160230. https://doi.org/10.1098/rsob.160230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyce BF, Xing L (2006) Osteoclasts no longer osteoblast slaves. Nat Med 12:1356–1358. https://doi.org/10.1038/nm1206-1356

    Article  CAS  PubMed  Google Scholar 

  30. Li D, Liu J, Guo B, Liang C, Dang L et al (2016) Osteoclast-derived exosomal MiR-214–3p inhibits osteoblastic bone formation. Nat Commun. https://doi.org/10.1038/ncomms10872

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun W, Zhao C, Li Y, Wang L, Nie G et al (2016) Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov 2:16015. https://doi.org/10.1038/celldisc.2016.15. https://www.nature.com/celldisc/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X, Guo B, Li Q, Peng J, Yang Z et al (2013) MiR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100. https://doi.org/10.1038/nm.3026

    Article  CAS  PubMed  Google Scholar 

  33. Zhao C, Sun W, Zhang P, Ling S, Li Y et al (2015) RNA biology MiR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway MiR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12(3):343–353. https://doi.org/10.1080/15476286.2015.1017205

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y et al (2018) Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561:195–200. https://doi.org/10.1038/s41586-018-0482-7

    Article  CAS  PubMed  Google Scholar 

  35. Ma Q, Liang M, Wu Y, Ding N, Duan L et al (2019) Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem 294:11240–11247. https://doi.org/10.1074/jbc.RA119.007625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang M, Yin X, Zhang S, Ai H, Luo F et al (2021) Osteoclast-derived small extracellular vesicles induce osteogenic differentiation via inhibiting ARHGAP1. Mol Ther Nucleic Acids 23:1191–1203. https://doi.org/10.1016/j.omtn.2021.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Solberg LB, Stang E, Brorson SH, Andersson G, Reinholt FP (2014) Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes. Histochem Cell Biol 143:195–207. https://doi.org/10.1007/s00418-014-1272-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng L, Wang Y, Peng Y, Wu Y, Ding Y et al (2015) Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone 79:37–42. https://doi.org/10.1016/j.bone.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  39. Chen C, Cheng P, Xie H, De ZH, Wu XP et al (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29:338–347. https://doi.org/10.1002/jbmr.2032

    Article  CAS  PubMed  Google Scholar 

  40. Uenaka M, Yamashita E, Kikuta J, Morimoto A, Ao T et al (2022) Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nat Commun 13:1–13. https://doi.org/10.1038/s41467-022-28673-2

    Article  CAS  Google Scholar 

  41. Ge M, Ke R, Cai T, Yang J, Mu X (2015) Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 467:27–32. https://doi.org/10.1016/j.bbrc.2015.09.135

    Article  CAS  PubMed  Google Scholar 

  42. Zhang P, Mcgrath B, Li S, Frank A, Zambito F et al (2002) The PERK eukaryotic initiation factor 2 kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22:3864–3874. https://doi.org/10.1128/MCB.22.11.3864-3874.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saito A, Ochiai K, Kondo S, Tsumagari K, Murakami T et al (2011) Endoplasmic reticulum stress response mediated by the PERK-EIF2α-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem 286:4809–4818. https://doi.org/10.1074/jbc.M110.152900

    Article  CAS  PubMed  Google Scholar 

  44. Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 590:185–192. https://doi.org/10.1002/1873-3468.12024

    Article  CAS  PubMed  Google Scholar 

  45. Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H et al (2017) Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem 292:11021–11033. https://doi.org/10.1074/jbc.M116.770941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morrell AE, Brown GN, Robinson ST, Sattler RL, Baik AD et al (2018) Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res 6:1–11. https://doi.org/10.1038/s41413-018-0007-x

    Article  CAS  Google Scholar 

  47. Hwang S, Park S-K, Lee HY, Kim SW, Lee JS et al (2014) MiR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 588:2957–2963. https://doi.org/10.1016/j.febslet.2014.05.048

    Article  CAS  PubMed  Google Scholar 

  48. Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW et al (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11:839–849. https://doi.org/10.1021/pr200682z

    Article  CAS  PubMed  Google Scholar 

  49. Ramos TL, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N et al (2016) MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 14:1–14. https://doi.org/10.1186/s12964-015-0124-8

    Article  CAS  Google Scholar 

  50. Narayanan R, Huang C-C, Ravindran S (2016) Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int 2016:3808674. https://doi.org/10.1155/2016/3808674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao L, Jiang S, Hantash BM (2010) Transforming growth factor β1 induces osteogenic differentiation of murine bone marrow stromal cells. Proc Tissue Eng Part A 16:725–733. https://doi.org/10.1089/ten.tea.2009.0495

    Article  CAS  Google Scholar 

  52. Luther G, Wagner ER, Zhu G, Kang Q, Luo Q et al (2011) BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther 11:229–240. https://doi.org/10.2174/156652311795684777

    Article  CAS  PubMed  Google Scholar 

  53. Qin Y, Wang L, Gao Z, Chen G, Zhang C (2016) Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep 6:1–11. https://doi.org/10.1038/srep21961

    Article  CAS  Google Scholar 

  54. Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284. https://doi.org/10.1038/nrc2622

    Article  CAS  PubMed  Google Scholar 

  55. Urabe F, Patil K, Ramm GA, Ochiya T, Soekmadji C (2021) Extracellular vesicles in the development of organ-specific metastasis. J Extracell Vesicles 10(9):e12125. https://doi.org/10.1002/jev2.12125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai J, Escara-Wilke J, Keller JM, Jung Y, Taichman RS et al (2019) Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis. J Exp Med 216:2883–2899. https://doi.org/10.1084/jem.20190158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoshino et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 176:329–335. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  Google Scholar 

  58. Gangoda L, Liem M, Ang CS, Keerthikumar S, Adda CG et al (2017) Proteomic profiling of exosomes secreted by breast cancer cells with varying metastatic potential. Proteomics 17:1–5. https://doi.org/10.1002/pmic.201600370

    Article  CAS  Google Scholar 

  59. Roodman GD (2009) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664. https://doi.org/10.1056/NEJMRA030831

    Article  Google Scholar 

  60. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593. https://doi.org/10.1038/nrc867

    Article  CAS  PubMed  Google Scholar 

  61. Ye Y, Li SL, Ma YY, Diao YJ, Yang L et al (2017) Exosomal MiR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget 8:94834–94849. https://doi.org/10.18632/oncotarget.22014

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y et al (2018) Cancer-secreted Hsa-MiR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci USA 115:2204–2209. https://doi.org/10.1073/pnas.1717363115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Probert C, Dottorini T, Speakman A, Hunt S, Nafee T et al (2019) Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis. Oncogene 38:1751–1763. https://doi.org/10.1038/s41388-018-0540-5

    Article  CAS  PubMed  Google Scholar 

  64. Yu L, Sui B, Fan W, Lei L, Zhou L et al (2021) Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting MiRNA-92a-1–5p. J Extracell Vesicles 10(3):e12056. https://doi.org/10.1002/jev2.12056

    Article  CAS  Google Scholar 

  65. Yonou H, Ochiai A, Goya M, Kanomata N, Hokama S et al (2004) Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cell to osteoclasts in osteoblastic metastatic lesions. Prostate 58:406–413. https://doi.org/10.1002/pros.10349

    Article  PubMed  Google Scholar 

  66. Tiedemann K, Sadvakassova G, Mikolajewicz N, Juhas M, Sabirova Z et al (2019) Exosomal release of L-plastin by breast cancer cells facilitates metastatic bone osteolysis. Transl Oncol 12:462–474. https://doi.org/10.1016/j.tranon.2018.11.014

    Article  PubMed  Google Scholar 

  67. Loftus A, Cappariello A, George C, Ucci A, Shefferd K et al (2020) Extracellular vesicles from osteotropic breast cancer cells affect bone resident cells. J Bone Miner Res 35:396–412. https://doi.org/10.1002/jbmr.3891

    Article  CAS  PubMed  Google Scholar 

  68. Liu X, Cao M, Palomares M, Wu X, Li A et al (2018) Metastatic breast cancer cells overexpress and secrete MiR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 20:1–12. https://doi.org/10.1186/s13058-018-1059-y

    Article  CAS  Google Scholar 

  69. Taverna S, Pucci M, Giallombardo M, Di Bella MA, Santarpia M et al (2017) Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-03460-y

    Article  CAS  Google Scholar 

  70. Xu Z, Liu X, Wang H, Li J, Dai L et al (2018) Lung adenocarcinoma cell-derived exosomal MiR-21 facilitates osteoclastogenesis. Gene 666:116–122. https://doi.org/10.1016/j.gene.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  71. Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood 117:3648. https://doi.org/10.1182/BLOOD-2010-10-311415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Valencia K, Luis-Ravelo D, Bovy N, Antón I, Martínez-Canarias S et al (2014) MiRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol 8:689–703. https://doi.org/10.1016/j.molonc.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li S (2021) The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnol 19:1–12. https://doi.org/10.1186/s12951-021-01028-7

    Article  CAS  Google Scholar 

  74. Pan H, Gray R, Braybrooke J, Davies C, Taylor C et al (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377:1836–1846. https://doi.org/10.1056/nejmoa1701830

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F et al (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7:ra63. https://doi.org/10.1126/scisignal.2005231

    Article  CAS  PubMed  Google Scholar 

  76. Vallabhaneni KC, Penfornis P, Xing F, Hassler Y, Adams KV et al (2017) Stromal cell extracellular vesicular cargo mediated regulation of breast cancer cell metastasis via ubiquitin conjugating enzyme E2 N pathway. Oncotarget 8:109861–109876. https://doi.org/10.18632/oncotarget.22371

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ et al (2016) Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 76:5832–5844. https://doi.org/10.1158/0008-5472.CAN-16-1092

    Article  CAS  PubMed  Google Scholar 

  78. Walker ND, Elias M, Guiro K, Bhatia R, Greco SJ et al (2019) Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death Dis 10(2):59. https://doi.org/10.1038/s41419-019-1304-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247. https://doi.org/10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  80. Essandoh K, Yang L, Wang X, Huang W, Qin D et al (2015) Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta Mol Basis Dis 1852:2362–2371. https://doi.org/10.1016/j.bbadis.2015.08.010

    Article  CAS  Google Scholar 

  81. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F et al (2013) Neutral sphingomyelinase 2 (NSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859. https://doi.org/10.1074/jbc.M112.446831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamamoto T, Kosaka N, Ochiya T (2019) Latest advances in extracellular vesicles: from bench to bedside. Sci Technol Adv Mater 20:746–757. https://doi.org/10.1080/14686996.2019.1629835

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641. https://doi.org/10.3402/jev.v3.24641

    Article  CAS  Google Scholar 

  84. Christianson HC, Svensson KJ, Van Kuppevelt TH, Li JP, Belting M (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA 110:17380–17385. https://doi.org/10.1073/pnas.1304266110

    Article  PubMed  PubMed Central  Google Scholar 

  85. Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EA et al (2016) Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem 291:1652–1663. https://doi.org/10.1074/jbc.M115.686295

    Article  CAS  PubMed  Google Scholar 

  86. Marleau AM, Chen CS, Joyce JA, Tullis RH (2012) Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 10:1–12. https://doi.org/10.1186/1479-5876-10-134

    Article  CAS  Google Scholar 

  87. Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F et al (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 227:658–667. https://doi.org/10.1002/jcp.22773

    Article  CAS  PubMed  Google Scholar 

  88. Nishida-Aoki N, Tominaga N, Takeshita F, Sonoda H, Yoshioka Y et al (2017) Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol Ther 25:181–191. https://doi.org/10.1016/j.ymthe.2016.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vader P, Mol EA, Pasterkamp G, Schiffelers RM (2016) Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148–156. https://doi.org/10.1016/j.addr.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  90. Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21:185–191. https://doi.org/10.1038/mt.2012.180

    Article  CAS  PubMed  Google Scholar 

  91. Tian Y, Li S, Song J, Ji T, Zhu M et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390. https://doi.org/10.1016/j.biomaterials.2013.11.083

    Article  CAS  PubMed  Google Scholar 

  92. Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N et al (2018) Osteoblast-derived extracellular vesicles are biological tools for the delivery of active molecules to bone. J Bone Miner Res 33:517–533. https://doi.org/10.1002/jbmr.3332

    Article  CAS  PubMed  Google Scholar 

  93. Namee NM, O’Driscoll L (2018) Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta Rev Cancer 1870:123–136. https://doi.org/10.1016/j.bbcan.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  94. Meng-MengXing-Ya LZ, Wei-Xian C, Shan-Liang Z, Hu Q et al (2014) Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumor Biol 35:10773–10779. https://doi.org/10.1007/s13277-014-2377-z

    Article  CAS  Google Scholar 

  95. Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M et al (2012) Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS ONE 7(12):e50999. https://doi.org/10.1371/journal.pone.0050999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maumus M, Rozier P, Boulestreau J, Jorgensen C, Noël D (2020) Mesenchymal stem cell-derived extracellular vesicles: opportunities and challenges for clinical translation. Front Bioeng Biotechnol 8:997. https://doi.org/10.3389/fbioe.2020.00997

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A et al (2020) Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 29:747–754. https://doi.org/10.1089/scd.2020.0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Munagala R, Aqil F, Jeyabalan J, Agrawal AK, Mudd AM et al (2017) Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett 393:94–102. https://doi.org/10.1016/J.CANLET.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Somiya M, Yoshioka Y, Ochiya T (2018) Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J Extracell Vesicles 7:1440132. https://doi.org/10.1080/20013078.2018.1440132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Umezu T, Takanashi M, Murakami Y, Ichiro OS, Kanekura K et al (2021) Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol Ther Methods Clin Dev 21:199–208. https://doi.org/10.1016/j.omtm.2021.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported in part by Project for Cancer Research and Therapeutic Evolution (P-PROMOTE) grant number: 22ama221405h0001 (to Y.Y.) from the Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ochiya.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, T., Yoshioka, Y., Sakamoto, S. et al. Extracellular vesicles in bone homeostasis: key roles of physiological and pathological conditions. J Bone Miner Metab 41, 345–357 (2023). https://doi.org/10.1007/s00774-022-01362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01362-2

Keywords

Navigation