Skip to main content
Log in

Predicting radiological vertebral fractures with a combined physical function and body composition scoring system

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the incidence of vertebral fractures (VFx) and the value of physical function (PF) and body composition (BC) for predicting VFx in a Japanese population. This study included 307 subjects (113 men, 194 women) at least 40 years of age who were assessed at community health check-ups in 2008 and 2016. PF was assessed by grip strength and by single-leg stance, timed up-and-go, and 30-s chair stand tests, each scored from 0 to 3 for a possible total of 12 points (higher scores reflect lower function). BC was scored on bioelectrical impedance measurements of trunk and appendage muscle volume, with 6 possible points. We diagnosed radiological VFx semiquantitatively on lateral views of the lumbar spine, and measured bone mineral status by quantitative ultrasound (QUS) of the calcaneus. We conducted logistic regression analysis with VFx as the dependent variable and age, sex, BMI, QUS, PF score, and BC score as independent variables. In 8 years, 36 participants (12%) sustained new VFx. After correcting for age, sex, BMI, and QUS, the odds of VFx increased with a PF score ≥ 8 (OR 5.6; 95% CI 1.21–25.90; P = 0.028) and increased further with a PF + BC score ≥ 9 (OR 8.1; 95% CI 1.80–36.00; P < 0.01). Both PF and BC are important for predicting fragility fractures. The scoring system used here may reflect small differences better than categorical (single cutoff) definitions of poor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  2. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burde. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crandall CJ, Larson JC, Watts NB, Gourlay ML, Donaldson MG, LaCroix A, Cauley JA, Wactawski-Wende J, Gass ML, Robbins JA, Ensrud KE (2014) Comparison of fracture risk prediction by the US Preventive Services Task Force strategy and two alternative strategies in women 50–64 years old in the Women’s Health Initiative. J Clin Endocrinol Metab 99:4514–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sandhu SK, Nguyen ND, Center JR, Pocock NA, Eisman JA, Nguyen TV (2010) Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporos Int 21:863–871

    Article  CAS  PubMed  Google Scholar 

  5. Kanis JA, Johnell O, Oden A, Borgstrom F, Zethraeus N, De Laet C, Jonsson B (2004) The risk and burden of vertebral fractures in Sweden. Osteoporos Int 15:20–26

    Article  CAS  PubMed  Google Scholar 

  6. Cockerill W, Lunt M, Silman AJ, Cooper C, Lips P, Bhalla AK, Cannata JB, Eastell R, Felsenberg D, Gennari C, Johnell O (2004) Health-related quality of life and radiographic vertebral fracture. Osteoporos Int 15:113–119

    Article  CAS  PubMed  Google Scholar 

  7. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  CAS  PubMed  Google Scholar 

  8. Rolland Y, Van Kan GA, Benetos A, Blain H, Bonnefoy M, Chassagne P, Jeandel C, Laroche M, Nourhashemi F, Orcel P, Piette F (2008) Frailty, osteoporosis and hip fracture: causes, consequences and therapeutic perspectives. J Nutr Health Aging 12:335–346

    Article  CAS  PubMed  Google Scholar 

  9. Scott D, Seibel M, Cumming R, Naganathan V, Blyth F, Le Couteur DG, Handelsman DJ, Waite LM, Hirani V (2017) Sarcopenic obesity and its temporal associations with changes in bone mineral density, incident falls, and fractures in older men: the concord health and ageing in men project. J Bone Miner Res. 32:575–583

    Article  CAS  PubMed  Google Scholar 

  10. Mokhtarzadeh H, Anderson DE (2016) The role of trunk musculature in osteoporotic vertebral fractures: implications for prediction, prevention, and management. Curr Osteoporos Rep 14:67–76

    Article  PubMed  Google Scholar 

  11. Hida T, Shimokata H, Sakai Y, Ito S, Matsui Y, Takemura M, Kasai T, Ishiguro N, Harada A (2016) Sarcopenia and sarcopenic leg as potential risk factors for acute osteoporotic vertebral fracture among older women. Eur Spine J 25:3424–3431

    Article  PubMed  Google Scholar 

  12. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15:95–101

    Article  PubMed  Google Scholar 

  13. Prato SCF, Andrade SM, Cabrera MAS, Dip RM, Santos HGD, Dellaroza MSG, Mesas AE (2017) Frequency and factors associated with falls in adults aged 55 years or more. Rev Saude Publica 51:37

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stel VS, Pluijm SM, Deeg DJ, Smit JH, Bouter LM, Lips P (2004) Functional limitations and poor physical performance as independent risk factors for self-reported fractures in older persons. Osteoporos Int 15:742–750

    Article  CAS  PubMed  Google Scholar 

  15. Watson SL, Weeks BK, Weis LJ, Harding AT, Horan SA, Beck BR (2017) High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res 33:211–220

    Article  PubMed  Google Scholar 

  16. Chiba D, Tsuda E, Wada K, Kumagai G, Sasaki E, Nawata A, Nakagomi S, Takahashi I, Nakaji S, Ishibashi Y (2016) Lumbar spondylosis, lumbar spinal stenosis, knee pain, back muscle strength are associated with the locomotive syndrome: Rural population study in Japan. J Orthop Sci 21:366–372

    Article  PubMed  Google Scholar 

  17. Kumagai G, Wada K, Tanaka T, Kudo H, Asari T, Chiba D, Ota S, Nakaji S, Ishibashi Y (2018) Associations between neck symptoms and LDL cholesterol in a cross-sectional population-based study. J Orthop Sci 23:277–281

    Article  PubMed  Google Scholar 

  18. Shafer KJ, Siders WA, Johnson LK, Lukaski HC (2009) Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition 25:25–32

    Article  PubMed  Google Scholar 

  19. Bosy-Westphal A, Later W, Hitze B, Sato T, Kossel E, Gluer CC, Heller M, Müller MJ (2008) Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes Facts 1:319–324

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dehghan M, Merchant AT (2008) Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J 7:26

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bischoff HA, Stähelin HB, Monsch AU, Iversen MD, Weyh A, Von Dechend M, Akos R, Conzelmann M, Dick W, Theiler R (2003) Identifying a cut-off point for normal mobility: a comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing 32:315–320

    Article  PubMed  Google Scholar 

  22. Giorgetti MM, Harris BA, Jette A (1998) Reliability of clinical balance outcome measures in the elderly. Physiother Res Int 3:274–283

    Article  CAS  PubMed  Google Scholar 

  23. Chomiak T, Pereira FV, Hu B (2015) The single-leg-stance test in Parkinson’s disease. J Clin Med Res 7:182–185

    Article  PubMed  Google Scholar 

  24. Chun SH, Cho B, Yang HK, Ahn E, Han MK, Oh B, Shin DW, Son KY (2017) Performance on physical function tests and the risk of fractures and admissions: findings from a national health screening of 557,648 community-dwelling older adults. Arch Gerontol Geriatr 68:174–180

    Article  PubMed  Google Scholar 

  25. Jones CJ, Rikli RE, Beam WC (1999) A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport 70:113–119

    Article  CAS  PubMed  Google Scholar 

  26. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  27. Cawthon PM, Blackwell TL, Marshall LM, Fink HA, Kado DM, Ensrud KE, Cauley JA, Black D, Orwoll ES, Cummings SR, Schousboe JT (2014) Physical performance and radiographic and clinical vertebral fractures in older men. J Bone Miner Res 29:2101–2108

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yoshimura N, Kinoshita H, Takijiri T, Oka H, Muraki S, Mabuchi A, Kawaguchi H, Nakamura K, Nakamura T (2008) Association between height loss and bone loss, cumulative incidence of vertebral fractures and future quality of life: the Miyama study. Osteoporos Int 19:21–28

    Article  CAS  PubMed  Google Scholar 

  29. Ross PD, Fujiwara S, Huang C, Davis JW, Epstein RS, Wasnich RD, Kodama K, Melton LJ III (1995) Vertebral fracture prevalence in women in Hiroshima compared to Caucasians or Japanese in the US. Int J Epidemiol 24:1171–1177

    Article  CAS  PubMed  Google Scholar 

  30. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M (2003) Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res 18:1547–1553

    Article  PubMed  Google Scholar 

  31. Lopes JB, Danilevicius CF, Takayama L, Caparbo VF, Menezes PR, Scazufca M, Kuroishi ME, Pereira RMR (2011) Prevalence and risk factors of radiographic vertebral fracture in Brazilian community-dwelling elderly. Osteoporos Int 22:711–719

    Article  CAS  PubMed  Google Scholar 

  32. Baddoura R, Arabi A, Haddad-Zebouni S, Khoury N, Salamoun M, Ayoub G, Okais J, Awada H, Fuleihan GEH (2007) Vertebral fracture risk and impact of database selection on identifying elderly Lebanese with osteoporosis. Bone 40:1066–1072

    Article  PubMed  Google Scholar 

  33. Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G (2017) Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int 28:1531–1542

    Article  CAS  PubMed  Google Scholar 

  34. Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, Papaioannou A, Josse R, Kovacs CS, Olszynski WP, Towheed T (2011) Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int 22:829–837

    Article  PubMed  Google Scholar 

  35. Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, Cauley JA, Hillier TA, Browner WS, Cummings SR (2009) A comparison of prediction models for fractures in older women: is more better? Arch Intern Med 169:2087–2094

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rubin KH, Abrahamsen B, Friis-Holmberg T, Hjelmborg JV, Bech M, Hermann AP, Barkmann R, Glüer CC, Brixen K (2013) Comparison of different screening tools (FRAX®, OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture: a population-based prospective study. Bone 56:16–22

    Article  PubMed  Google Scholar 

  37. Walsh MC, Hunter GR, Livingstone MB (2006) Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int 17:61–67

    Article  PubMed  Google Scholar 

  38. Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C (2001) Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology 47:207–212

    Article  CAS  PubMed  Google Scholar 

  39. Segal NA, Torner JC, Yang M, Curtis JR, Felson DT, Nevitt MC (2008) Muscle mass is more strongly related to hip bone mineral density than is quadriceps strength or lower activity level in adults over age 50 year. J Clin Densitom 11:503–510

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee EY, Lee SJ, Kim KM, Seo DH, Lee SW, Choi HS, Kim HC, Youm Y, Kim CO, Rhee Y (2017) Lower jump power rather than muscle mass itself is associated with vertebral fracture in community-dwelling elderly Korean women. Calcif Tissue Int 100:585–594

    Article  CAS  PubMed  Google Scholar 

  41. Wihlborg A, Englund M, Åkesson K, Gerdhem P (2015) Fracture predictive ability of physical performance tests and history of falls in elderly women: a 10-year prospective study. Osteoporos Int 26:2101–2109

    Article  CAS  PubMed  Google Scholar 

  42. van der Klift M, Pols HA, Hak AE, Witteman JC, Hofman A, de Laet CE (2002) Bone mineral density and the risk of peripheral arterial disease: the Rotterdam Study. Calcif Tissue Int 70:443–449

    Article  CAS  PubMed  Google Scholar 

  43. Muraki S, Akune T, Ishimoto Y, Nagata K, Yoshida M, Tanaka S, Oka H, Kawaguchi H, Nakamura K, Yoshimura N (2013) Risk factors for falls in a longitudinal population-based cohort study of Japanese men and women: the ROAD Study. Bone 52:516–523

    Article  PubMed  Google Scholar 

  44. Arden NK, Crozier S, Smith H, Anderson F, Edwards C, Raphael H, Cooper C (2006) Knee pain, knee osteoarthritis, and the risk of fracture. Arthritis Rheum 55:610–615

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 18200044), by the Japanese Society for the Promotion of Science (No. 21500676), by a Health and Labour Sciences Research Grant, and by JOA-Subsidized Science Project Research from the Japanese Orthopaedic Association (No. 2015-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to On Takeda.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests to declare.

Ethical approval

This study was approved by the Ethics Committee of Hirosaki University Graduate School of Medicine and was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Each individual participant gave informed consent before participating.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, O., Kumagai, G., Wada, K. et al. Predicting radiological vertebral fractures with a combined physical function and body composition scoring system. J Bone Miner Metab 37, 935–942 (2019). https://doi.org/10.1007/s00774-019-00998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-00998-x

Keywords

Navigation