Skip to main content

Advertisement

Log in

Platelet-derived growth factor BB enhances osteoclast formation and osteoclast precursor cell chemotaxis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Enhanced osteoclast formation increases bone resorption, which triggers bone remodeling. Platelet-derived growth factor BB (PDGF-BB) enhances precursor cell homing, angiogenesis, and bone healing, and thereby could also treat osteoporosis. However, the effect of PDGF-BB on osteoclast formation is not fully understood. We investigated whether exogenous recombinant PDGF-BB directly affects osteoclast formation and osteoclast precursor cell chemotaxis. The murine monocyte–macrophage cell line RAW264.7 and bone-marrow-derived macrophages were cultured with recombinant mouse PDGF-BB with or without a platelet-derived growth factor receptor β inhibitor (AG-1295) or a Janus kinase 2 inhibitor (AG-490) to analyze the effect on osteoclastogenesis in vitro. PDGF-BB with or without AG-490 or AG-1295 was locally administrated in the mandibular fracture of 16-week-old Sprague Dawley rats (n = 18) for 1–2 weeks to analyze the effect on osteoclastogenesis in vivo. The effect of the treatments on osteoclast formation, osteoclast precursor cell migration, and expression of osteoclastogenic signaling molecules was analyzed. PDGF-BB enhanced osteoclast formation both in vitro and in vivo, but AG-490 and AG-1295 inhibited this effect. PDGF-BB enhanced phosphorylation of extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, and signal transducer and activator of transcription 3 (STAT3) in RAW264.7 cells. AG-490 inhibited PDGF-BB-induced STAT3 phosphorylation. PDGF-BB enhanced RAW264.7 cell migration and gene expression of osteoclastogenic signaling molecules (i.e., nuclear factor of activated T cells 1, dendrocyte-expressed seven transmembrane protein, and B-cell lymphoma 2), and treatment with AG-1295, AG-490, or S3I-201 (a STAT3 inhibitor) reduced this effect. PDGF-BB enhanced osteoclast formation, osteoclast precursor cell chemotaxis, and phosphorylation of STAT3, Akt, and ERK1/2. but AG-1295 and AG-490 reduced this effect. These findings reflect the complexity of PDGF-BB in bone biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  2. Boyce BF, Rosenberg E, de Papp AE, Duong LT (2012) The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur J Clin Invest 42:1332–1341

    Article  CAS  PubMed  Google Scholar 

  3. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC (1998) The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J Biol Chem 273:34120–34127

    Article  CAS  PubMed  Google Scholar 

  4. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  6. Pathak JL, Bravenboer N, Verschueren P, Lems WF, Luyten FP, Klein-Nulend J, Bakker AD (2014) Inflammatory factors in the circulation of patients with active rheumatoid arthritis stimulate osteoclastogenesis via endogenous cytokine production by osteoblasts. Osteoporos Int 25:2453–2463

    Article  CAS  PubMed  Google Scholar 

  7. Antoniades HN, Hunkapiller MW (1983) Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science 220:963–965

    Article  CAS  PubMed  Google Scholar 

  8. Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE (2008) Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 90(Suppl 1):48–54

    Article  PubMed  Google Scholar 

  9. Moore DC, Ehrlich MG, McAllister SC, Machan JT, Hart CE, Voigt C, Lesieur-Brooks AM, Weber EW (2009) Recombinant human platelet-derived growth factor-BB augmentation of new-bone formation in a rat model of distraction osteogenesis. J Bone Joint Surg Am 91:1973–1984

    Article  PubMed  Google Scholar 

  10. Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X (2014) PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 20:1270–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chung R, Foster BK, Zannettino AC, Xian CJ (2009) Potential roles of growth factor PDGF-BB in the bony repair of injured growth plate. Bone 44:878–885

    Article  CAS  PubMed  Google Scholar 

  12. Friedlaender GE, Lin S, Solchaga LA, Snel LB, Lynch SE (2013) The role of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in orthopaedic bone repair and regeneration. Curr Pharm Des 19:3384–3390

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez-Fernandez MA, Gallois A, Riedl T, Jurdic P, Hoflack B (2008) Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling. PLoS One 3:e3537

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang Z, Chen J, Jin D (1998) Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: the role of receptor beta. Biochem Biophys Res Commun 251:190–194

    Article  CAS  PubMed  Google Scholar 

  15. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448

    Article  CAS  PubMed  Google Scholar 

  16. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  17. Yamashita J, Datta NS, Chun YH, Yang DY, Carey AA, Kreider JM, Goldstein SA, McCauley LK (2008) Role of Bcl2 in osteoclastogenesis and PTH anabolic actions in bone. J Bone Miner Res 23:621–632

    Article  CAS  PubMed  Google Scholar 

  18. Mensah KA, Ritchlin CT, Schwarz EM (2010) RANKL induces heterogeneous DC-STAMPlo and DC-STAMPhi osteoclast precursors of which the DC-STAMPlo precursors are the master fusogens. J Cell Physiol 223:76–83

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim K, Lee J, Kim JH, Jin HM, Zhou B, Lee SY, Kim N (2007) Protein inhibitor of activated STAT 3 modulates osteoclastogenesis by down-regulation of NFATc1 and osteoclast-associated receptor. J Immunol 178:5588–5594

    Article  CAS  PubMed  Google Scholar 

  20. He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park SJ, Yuan J, Yang X, Li X, Jiang L, Chen S, Yang FC (2011) Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 6:e24780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li CH, Zhao JX, Sun L, Yao ZQ, Deng XL, Liu R, Liu XY (2013) AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis. Biochem Biophys Res Commun 435:533–539

    Article  CAS  PubMed  Google Scholar 

  22. Tsubaki M, Komai M, Itoh T, Imano M, Sakamoto K, Shimaoka H, Takeda T, Ogawa N, Mashimo K, Fujiwara D, Mukai J, Sakaguchi K, Satou T, Nishida S (2014) Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation. J Biomed Sci 21:10

    Article  PubMed  PubMed Central  Google Scholar 

  23. Collin-Osdoby P, Osdoby P (2012) RANKL-mediated osteoclast formation from murine RAW 264.7 cells. In: Helfrich MH, Ralston SH (eds) Bone research protocols methods in molecular medicine. Humana, New York, p 187

    Chapter  Google Scholar 

  24. Wei ZF, Tong B, Xia YF, Lu Q, Chou GX, Wang ZT, Dai Y (2013) Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 pathways. PLoS One 8:e59171. doi:10.1371/journal.pone.0059171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Connor KL, Shaw LM, Mercurio AM (1998) Release of cAMP gating by the ɑ6β4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J Cell Biol 143:1749–1760

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thakare K, Deo V (2012) Randomized controlled clinical study of rhPDGF-BB + β-TCP versus HA + β-TCP for the treatment of infrabony periodontal defects: clinical and radiographic results. Int J Periodontics Restorative Dent 32:689–696

    PubMed  Google Scholar 

  27. Christersson A, Sanden B, Larsson S (2015) Prospective randomized feasibility trial to assess the use of rhPDGF-BB in treatment of distal radius fractures. J Orthop Surg Res 10:37

    Article  PubMed  PubMed Central  Google Scholar 

  28. Daniels TR, Younger AS, Penner MJ, Wing KJ, Le IL, Russell IS, Lalonde KA, Evangelista PT, Quiton JD, Glazebrook M, DiGiovanni CW (2015) Prospective randomized controlled trial of hindfoot and ankle fusions treated with rhPDGF-BB in combination with a β-TCP-collagen matrix. Foot Ankle Int 36:739–748

    Article  PubMed  Google Scholar 

  29. Demirtas TT, Goz E, Karakecili A, Gumusderelioglu M (2016) Combined delivery of PDGF-BB and BMP-6 for enhanced osteoblastic differentiation. J Mater Sci Mater Med 27:12

    Article  PubMed  Google Scholar 

  30. Hock JM, Canalis E (1994) Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts. Endocrinology 134:1423–1428

    Article  CAS  PubMed  Google Scholar 

  31. Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, Pando MP, Asano T, Verma IM, Oda H, Nakamura K, Tanaka S (2000) Reciprocal role of ERK and NF-κB pathways in survival and activation of osteoclasts. J Cell Biol 148:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296:1653–1655

    Article  CAS  PubMed  Google Scholar 

  33. Gohda J, Akiyama T, Koga T, Takayanagi H, Tanaka S, Inoue J (2005) RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J 24:790–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  CAS  PubMed  Google Scholar 

  35. Park JS, Lee J, Lim MA, Kim EK, Kim SM, Ryu JG, Lee JH, Kwok SK, Park KS, Kim HY, Park SH, Cho ML (2014) JAK2-STAT3 blockade by AG490 suppresses autoimmune arthritis in mice via reciprocal regulation of regulatory T cells and Th17 cells. J Immunol 192:4417–4424

    Article  CAS  PubMed  Google Scholar 

  36. Ishii T, Kikuta J, Kubo A, Ishii M (2010) Control of osteoclast precursor migration: a novel point of control for osteoclastogenesis and bone homeostasis. IBMS Bonekey 7:279–286

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (no. 81271107, no. 81470718, and no. 81100736).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-bing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

D. Li and Q. Wan contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Dq., Wan, Ql., Pathak, J.L. et al. Platelet-derived growth factor BB enhances osteoclast formation and osteoclast precursor cell chemotaxis. J Bone Miner Metab 35, 355–365 (2017). https://doi.org/10.1007/s00774-016-0773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0773-8

Keywords

Navigation