Skip to main content

Advertisement

Log in

In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Sutures are fibrous tissues that connect bones in craniofacial skeletal complexes. Cranio- and dentofacial skeletal deformities in infant and adolescent patients can be treated by applying tensile force to sutures to induce sutural bone formation. The early gene expression induced by mechanical stress is essential for bone formation in long bones; however, early gene expression during sutural bone formation induced by tensile force is poorly characterized. In vivo studies are essential to evaluate molecular responses to mechanical stresses in heterogeneous cell populations, such as sutures. In this paper we examined in vivo early gene expression and the underlying regulatory mechanism for this expression in tensile-force-applied cranial sutures, focusing on genes involved in vascularization. Tensile force upregulated expression of vascular factors, such as vascular endothelial growth factor (Vegf) and endothelial cell markers, in sutures within 3 h. The expression of connective tissue growth factor (Ctgf) and Rho-associated coiled-coil containing protein kinase 2 (Rock2) was also upregulated by tensile force. A CTGF-neutralizing antibody and the ROCK inhibitor, Y-27632, abolished tensile-force-induced Vegf expression. Moreover, tensile force activated extracellular signal-related kinase 1/2 (ERK1/2) signaling in sagittal sutures, and the ERK1/2 inhibitor, U0126, partially inhibited tensile-force-induced Ctgf expression. These results indicate that tensile force induces in vivo gene expression associated with vascularization early in tensile-force-induced sutural bone formation. Moreover, the early induction of Vegf gene expression is regulated by CTGF and ROCK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Opperman LA (2000) Cranial sutures as intramembranous bone growth sites. Dev Dyn 219:472–485

    Article  CAS  PubMed  Google Scholar 

  2. Herring SW (2008) Mechanical influences on suture development and patency. Front Oral Biol 12:41–56

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fields HW, Proffit WR (2012) Treatment of skeletal problems in children and preadolescents. In: Proffit WR, Fields HW, Sarver DM (eds) Contemporary orthodontics, 5th edn. Mosby, St. Louis, pp 472–528

    Google Scholar 

  4. Derderian C, Seaward J (2012) Syndromic craniosynostosis. Semin Plast Surg 26:64–75

    Article  PubMed  PubMed Central  Google Scholar 

  5. Steenvoorden GP, van de Velde JP, Prahl-Andersen B (1990) The effect of duration and magnitude of tensile mechanical forces on sutural tissue in vivo. Eur J Orthod 12:330–339

    Article  CAS  PubMed  Google Scholar 

  6. Miyawaki S, Forbes DP (1987) The morphologic and biochemical effects of tensile force application to the interparietal suture of the Sprague-Dawley rat. Am J Orthod Dentofac Orthop 92:123–133

    Article  CAS  Google Scholar 

  7. Ten Cate AR, Freeman E, Dickinson JB (1977) Sutural development: structure and its response to rapid expansion. Am J Orthod 71:622–636

    Article  PubMed  Google Scholar 

  8. Mantila Roosa SM, Liu Y, Turner CH (2011) Gene expression patterns in bone following mechanical loading. J Bone Miner Res 26:100–112

    Article  PubMed  Google Scholar 

  9. Yang R, Amir J, Liu H, Chaqour B (2008) Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu Y, Malladi P, Chiou M, Longaker MT (2007) Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119:819–829

    Article  CAS  PubMed  Google Scholar 

  11. Lenton KA, Nacamuli RP, Wan DC, Helms JA, Longaker MT (2005) Cranial suture biology. Curr Top Dev Biol 66:287–328

    Article  CAS  PubMed  Google Scholar 

  12. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143

    Article  PubMed  Google Scholar 

  14. James AW, Theologis AA, Brugmann SA, Xu Y, Carre AL, Leucht P, Hamilton K, Korach KS, Longaker MT (2009) Estrogen/estrogen receptor alpha signaling in mouse posterofrontal cranial suture fusion. PLoS One 4:e7120

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H (2010) The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58:721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K (1984) Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest 73:148–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  CAS  PubMed  Google Scholar 

  18. Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18:1264–1266

    CAS  PubMed  Google Scholar 

  19. Warren RS, Yuan H, Matli MR, Ferrara N, Donner DB (1996) Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 271:29483–29488

    Article  CAS  PubMed  Google Scholar 

  20. Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J 273:3639–3649

    Article  CAS  PubMed  Google Scholar 

  21. Hoshi K, Kawaki H, Takahashi I, Takeshita N, Seiryu M, Murshid SA, Masuda T, Anada T, Kato R, Kitaura H, Suzuki O, Takano-Yamamoto T (2014) Compressive force-produced CCN2 induces osteocyte apoptosis through ERK1/2 pathway. J Bone Miner Res 29:1244–1257

    Article  CAS  PubMed  Google Scholar 

  22. Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM, Marshall CJ, Olson MF (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64:8994–9001

    Article  CAS  PubMed  Google Scholar 

  24. Hou B, Fukai N, Olsen BR (2007) Mechanical force-induced midpalatal suture remodeling in mice. Bone 40:1483–1493

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao H, Feng J, Ho TV, Grimes W, Urata M, Chai Y (2015) The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17:386–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M, Goligorsky MS (2008) Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 74:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, Panganiban B, Meng L, Zhou P, Shahnazari M, Ritchie RO, Lane NE (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18:456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dan P, Velot É, Decot V, Menu P (2015) The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 128:2415–2422

    Article  CAS  PubMed  Google Scholar 

  29. Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ (2009) Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 108:1263–1273

    Article  CAS  PubMed  Google Scholar 

  30. Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715

    Article  CAS  PubMed  Google Scholar 

  31. Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, Kawashima H (2001) Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res 16:24–32

    Article  CAS  PubMed  Google Scholar 

  32. Jacobsen KA, Al-Aql ZS, Wan C, Fitch JL, Stapleton SN, Mason ZD, Cole RM, Gilbert SR, Clemens TL, Morgan EF, Einhorn TA, Gerstenfeld LC (2008) Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res 23:596–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida T, Yamashita M, Hayashi M (2012) Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells. J Biol Chem 287:25706–25714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nishida T, Kondo S, Maeda A, Kubota S, Lyons KM, Takigawa M (2009) CCN family 2/connective tissue growth factor (CCN2/CTGF) regulates the expression of Vegf through Hif-1alpha expression in a chondrocytic cell line, HCS-2/8, under hypoxic condition. Bone 44:24–31

    Article  CAS  PubMed  Google Scholar 

  36. Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF, Zhou L (2012) Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res 318:2105–2115

    Article  CAS  PubMed  Google Scholar 

  37. Xiao LW, Yang M, Dong J, Xie H, Sui GL, He YL, Lei JX, Liao EY, Yuan X (2011) Stretch-inducible expression of connective tissue growth factor (CTGF) in human osteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem 28:297–304

    Article  CAS  PubMed  Google Scholar 

  38. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567

    Article  CAS  PubMed  Google Scholar 

  39. Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8:171–179

    Article  CAS  PubMed  Google Scholar 

  40. Zippel N, Malik RA, Frömel T, Popp R, Bess E, Strilic B, Wettschureck N, Fleming I, Fisslthaler B (2013) Transforming growth factor-β-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-α1 and redox balance in endothelial cells. Arterioscler Thromb Vasc Biol 33:2792–2799

    Article  CAS  PubMed  Google Scholar 

  41. Torsoni AS, Fonseca PM, Crosara-Alberto DP, Franchini KG (2003) Early activation of p160ROCK by pressure overload in rat heart. Am J Physiol Cell Physiol 284:C1411–C1419

    Article  CAS  PubMed  Google Scholar 

  42. Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu F, Zhang Z, Wu G, Li Z, Zhang R, Ren J, Nong L (2011) Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Med Oncol 28:565–571

    Article  CAS  PubMed  Google Scholar 

  44. Yoneda A, Multhaupt HA, Couchman JR (2005) The Rho kinases I and II regulate different aspects of myosin II activity. J Cell Biol 170:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, Saint-Geniez M, Campaigniac JP, Liao JK, D’Amore PA (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24:3186–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Honjo T, Kubota S, Kamioka H, Sugawara Y, Ishihara Y, Yamashiro T, Takigawa M, Takano-Yamamoto T (2012) Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress. J Cell Commun Signal 6:225–232

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. H. Kitaura (Tohoku University Graduate School of Dentistry) for his valuable technical instructions. This work was supported by a Grant-in-Aid for Scientific Research (A) and (B) to T.T.-Y., a Grant-in-Aid for Scientific Research (C) to N.T. from the Japan Society for the Promotion of Science, and in part by a grant to T.T.-Y. from the Japan Society and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruko Takano-Yamamoto.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeshita, N., Hasegawa, M., Sasaki, K. et al. In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab 35, 40–51 (2017). https://doi.org/10.1007/s00774-016-0737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0737-z

Keywords

Navigation