Skip to main content

Advertisement

Log in

Difference in intraosseous blood vessel volume and number in osteoporotic model mice induced by spinal cord injury and sciatic nerve resection

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

In the present study, we examined intraosseous blood vessel parameters of the tibial metaphysis in mice using microcomputed tomography (µCT) to investigate the relationship between post-nerve-injury osteoporosis and local intraosseous blood vessel volume and number. Mice were randomly divided into groups receiving spinal cord injury (SCI), sciatic nerve resection group (NX), or intact controls (30 mice/group). Four weeks after surgery, mice were perfused with silicone and the distribution of intraosseous blood vessels analyzed by μCT. The bone density, μCT microstructure, biomechanical properties, and the immunohistochemical and biochemical indicators of angiogenesis were also measured. The SCI group showed significantly reduced tibial metaphysis bone density, μCT bone microstructure, tibial biomechanical properties, indicators of angiogenesis, and intraosseous blood vessel parameters compared to the NX group. Furthermore, the spinal cord-injured mice exhibited significantly decreased intraosseous blood vessel volume and number during the development of osteoporosis. In conclusion, these data suggest that decreased intraosseous blood vessel volume and number may play an important role in the development of post-nerve-injury osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Waarsing JH, Day JS, Verhaar JA, Ederveen AG, Weinans H (2006) Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats. J Orthop Res 24:926–935

    Article  PubMed  Google Scholar 

  2. Nian H, Qin LP, Chen WS, Zhang QY, Zheng HC, Wang Y (2006) Protective effect of steroidal saponins from rhizome of Anemarrhena asphodeloides on ovariectomy-induced bone loss in rats. Acta Pharmacol Sin 27:728–734

    Article  PubMed  CAS  Google Scholar 

  3. Jiang SD, Jiang LS, Dai LY (2006) Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos Int 17:1552–1561

    Article  PubMed  Google Scholar 

  4. Jiang SD, Shen C, Jiang LS, Dai LY (2007) Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos Int 18:743–750

    Article  PubMed  Google Scholar 

  5. Jiang SD, Jiang LS, Dai LY (2007) Changes in bone mass, bone structure, bone biomechanical properties, and bone metabolism after spinal cord injury: a 6-month longitudinal study in growing rats. Calcif Tissue Int 80:167–175

    Article  PubMed  CAS  Google Scholar 

  6. Liu D, Zhao CQ, Li H, Jiang SD, Jiang LS, Dai LY (2008) Effects of spinal cord injury and hindlimb immobilization on sublesional and supralesional bones in young growing rats. Bone 43:119–125

    Article  PubMed  CAS  Google Scholar 

  7. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27:305–309

    Article  PubMed  CAS  Google Scholar 

  8. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850

    Article  PubMed  CAS  Google Scholar 

  9. Iwamoto J, Takeda T, Ichimura S, Sato Y, Yeh JK (2003) Comparative effects of orchidectomy and sciatic neurectomy on cortical and cancellous bone in young growing rats. J Bone Miner Metab 21:211–216

    PubMed  Google Scholar 

  10. Geris L, Gerisch A, Sloten JV, Weiner R, Oosterwyck HV (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251:137–158

    Article  PubMed  CAS  Google Scholar 

  11. Towler DA (2007) Vascular biology and bone formation: hints from HIF. J Clin Invest 117:1477–1480

    Article  PubMed  CAS  Google Scholar 

  12. Athanasopoulos AN, Schneider D, Keiper T, Alt V, Pendurthi UR, Liegibel UM, Sommer U, Nawroth PP, Kasperk C, Chavakis T (2007) Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem 282:26746–26753

    Article  PubMed  CAS  Google Scholar 

  13. Egrise D, Martin D, Neve P, Vienne A, Verhas M, Schoutens A (1992) Bone blood flow and in vitro proliferation of bone marrow and trabecular bone osteoblast-like cells in ovariectomized rats. Calcif Tissue Int 50:336–341

    Article  PubMed  CAS  Google Scholar 

  14. Prisby RD, Ramsey MW, Behnke BJ, Dominguez JM 2nd, Donato AJ, Allen MR, Delp MD (2007) Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats. J Bone Miner Res 22:1280–1288

    Article  PubMed  CAS  Google Scholar 

  15. Dominguez JM 2nd, Prisby RD, Muller-Delp JM, Allen MR, Delp MD. Increased nitric oxide-mediated vasodilation of bone resistance arteries is associated with increased trabecular bone volume after endurance training in rats. Bone 46:813–819

  16. Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22:286–297

    Article  PubMed  CAS  Google Scholar 

  17. Chantraine A, Nusgens B, Lapiere CM (1986) Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 38:323–327

    Article  PubMed  CAS  Google Scholar 

  18. Jiang SD, Jiang LS, Dai LY (2007) Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int 18:339–349

    Article  PubMed  CAS  Google Scholar 

  19. Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD (1998) Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 22:295–299

    Article  PubMed  CAS  Google Scholar 

  20. Konttinen Y, Imai S, Suda A (1996) Neuropeptides and the puzzle of bone remodeling. State of the art. Acta Orthop Scand 67:632–639

    Article  PubMed  CAS  Google Scholar 

  21. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192

    Article  PubMed  Google Scholar 

  22. Hunter J (2007) A treatise on the blood, inflammation, and gun-shot wounds. 1794. Clin Orthop Relat Res 458:27–34

    Article  PubMed  Google Scholar 

  23. Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG, Richter W (2005) Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20:2028–2035

    Article  PubMed  CAS  Google Scholar 

  24. Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ (2006) Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27:3249–3255

    Article  PubMed  CAS  Google Scholar 

  25. Glowacki J (1998) Angiogenesis in fracture repair. Clin Orthop Relat Res S82–S89

  26. Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66

    Article  PubMed  CAS  Google Scholar 

  27. Yang Q, McHugh KP, Patntirapong S, Gu X, Wunderlich L, Hauschka PV (2008) VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Matrix Biol 27:589–599

    Article  PubMed  Google Scholar 

  28. Abe M (2008) Link between osteoclastogenesis, angiogenesis and myeloma expansion. Clin Calcium 18:473–479

    PubMed  CAS  Google Scholar 

  29. Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560–564

    Article  PubMed  CAS  Google Scholar 

  30. Ding WG, Wei ZX, Liu JB (2011) Reduced local blood supply to the tibial metaphysis is associated with ovariectomy-induced osteoporosis in mice. Connect Tissue Res 52:25–29

    Article  PubMed  Google Scholar 

  31. Griffith JF, Yeung DK, Tsang PH, Choi KC, Kwok TC, Ahuja AT, Leung KS, Leung PC (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23:1068–1075

    Article  PubMed  Google Scholar 

  32. Laroche M (2002) Intraosseous circulation from physiology to disease. Joint Bone Spine 69:262–269

    Article  PubMed  Google Scholar 

  33. Orlic I, Borovecki F, Simic P, Vukicevic S (2007) Gene expression profiling in bone tissue of osteoporotic mice. Arh Hig Rada Toksikol 58:3–11

    Article  PubMed  CAS  Google Scholar 

  34. Garcia-Sanz A, Rodriguez-Barbero A, Bentley MD, Ritman EL, Romero JC (1998) Three-dimensional microcomputed tomography of renal vasculature in rats. Hypertension 31:440–444

    Article  PubMed  CAS  Google Scholar 

  35. Wietholt C, Roerig DL, Gordon JB, Haworth ST, Molthen RC, Clough AV (2008) Bronchial circulation angiogenesis in the rat quantified with SPECT and micro-CT. Eur J Nucl Med Mol Imaging 35:1124–1132

    Article  PubMed  Google Scholar 

  36. Daghini E, Zhu XY, Versari D, Bentley MD, Napoli C, Lerman A, Lerman LO (2007) Antioxidant vitamins induce angiogenesis in the normal pig kidney. Am J Physiol Renal Physiol 293:F371–F381

    Article  PubMed  CAS  Google Scholar 

  37. Cheung AM, Brown AS, Cucevic V, Roy M, Needles A, Yang V, Hicklin DJ, Kerbel RS, Foster FS (2007) Detecting vascular changes in tumour xenografts using micro-ultrasound and micro-ct following treatment with VEGFR-2 blocking antibodies. Ultrasound Med Biol 33:1259–1268

    Article  PubMed  Google Scholar 

  38. Schneider P, Krucker T, Meyer E, Ulmann-Schuler A, Weber B, Stampanoni M, Muller R (2009) Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro-computed tomography and vascular replica. Microsc Res Tech 72:690–701

    Article  PubMed  Google Scholar 

  39. Lu C, Marcucio R, Miclau T (2006) Assessing angiogenesis during fracture healing. Iowa Orthop J 26:17–26

    PubMed  Google Scholar 

  40. Stefanou D, Batistatou A, Arkoumani E, Ntzani E, Agnantis NJ (2004) Expression of vascular endothelial growth factor (VEGF) and association with microvessel density in small-cell and non-small-cell lung carcinomas. Histol Histopathol 19:37–42

    PubMed  CAS  Google Scholar 

  41. Des Guetz G, Uzzan B, Nicolas P, Cucherat M, Morere JF, Benamouzig R, Breau JL, Perret GY (2006) Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 94:1823–1832

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Bo Liu.

About this article

Cite this article

Ding, WG., Yan, Wh., Wei, ZX. et al. Difference in intraosseous blood vessel volume and number in osteoporotic model mice induced by spinal cord injury and sciatic nerve resection. J Bone Miner Metab 30, 400–407 (2012). https://doi.org/10.1007/s00774-011-0328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0328-y

Keywords

Navigation