Skip to main content

Advertisement

Log in

Comparative morphology of the osteocyte lacunocanalicular system in various vertebrates

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteocytes are embedded in the bone matrix, and they communicate with adjacent osteocytes, osteoblasts, and osteoclasts through the osteocyte lacunocanalicular system. Osteocytes are believed to be essential for the maintenance of bone homeostasis because they regulate mechanical sensing and mineral metabolism in mammalian bones; however, osteocyte morphology in other vertebrates has not been well documented. We conducted a comparative study on the morphology of osteocytes and the lacunocanalicular system of the following vertebrates: two teleost fishes [medaka (Oryzias latipes), and zebrafish (Danio rerio)], three amphibians [African clawed frog (Xenopus laevis), black-spotted pond frog (Rana nigromaculata), and Japanese fire-bellied newt (Cynops pyrrhogaster)], two reptiles [four-toed tortoise (Testudo horsfieldii) and green iguana (Iguana iguana)], and two mammals (laboratory mouse C57BL6 and human). The distribution of the osteocyte lacunocanalicular system in all these animals was investigated using the modified silver staining and the fluorescein-conjugated phalloidin staining methods. Bones of medaka had few osteocytes (acellular bone). Bones of zebrafish contained osteocytes (cellular bone) but had a poorly developed osteocyte lacunocanalicular system. Bones of Xenopus laevis, a freshwater species, and of other amphibians, reptiles, and mammals contained numerous osteocytes and a well-developed lacunocanalicular system. The present study indicates that development of the osteocyte lacunocanalicular system differs between teleost fishes and land vertebrates, but this pattern is not directly related to aquatic habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonewald LF (2006) Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3:7–15

    PubMed  Google Scholar 

  2. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475

    Article  PubMed  CAS  Google Scholar 

  3. Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA (2009) Local communication on and within bone controls bone remodeling. Bone 44:1026–1033

    Article  PubMed  Google Scholar 

  4. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  PubMed  CAS  Google Scholar 

  5. Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236

    Article  PubMed  CAS  Google Scholar 

  6. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    PubMed  CAS  Google Scholar 

  7. Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5:611–619

    Article  PubMed  CAS  Google Scholar 

  8. Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026

    Article  PubMed  CAS  Google Scholar 

  9. Weiss RE, Watabe N (1979) Studies on the biology of fish bone. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcif Tissue Int 28:43–56

    Article  PubMed  CAS  Google Scholar 

  10. Peignoux-Deville J, Lallier F, Vidal B (1982) Evidence for the presence of osseous tissue in dogfish vertebrae. Cell Tissue Res 222:605–614

    Article  PubMed  CAS  Google Scholar 

  11. Ekanayake S, Hall BK (1987) The development of acellularity of the vertebral bone of the Japanese medaka, Oryzias latipes (Teleostei; Cyprinidontidae). J Morphol 193:253–261

    Article  PubMed  CAS  Google Scholar 

  12. Hughes DR, Bassett JR, Moffat LA (1994) Histological identification of osteocytes in the allegedly acellular bone of the sea breams Acanthopagrus australis, Pagrus auratus and Rhabdosargus sarba (Sparidae, Perciformes, Teleostei). Anat Embryol 190:163–179

    Article  PubMed  CAS  Google Scholar 

  13. Witten PE, Huysseune A (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 84:315–346

    Article  PubMed  Google Scholar 

  14. Miura S, Hanaoka K, Togashi S (2008) Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian. Bone 43:901–909

    Article  PubMed  CAS  Google Scholar 

  15. Rubinacci A, Villa I, Dondi Benelli F, Borgo E, Ferretti M, Palumbo C, Marotti G (1998) Osteocyte-bone lining cell system at the origin of steady ionic current in damaged amphibian bone. Calcif Tissue Int 63:331–339

    Article  PubMed  CAS  Google Scholar 

  16. Anderson MP, Capen CC (1976) Fine structural changes of bone cells in experimental nutritional osteodystrophy of green iguanas. Virchows Arch B Cell Pathol 20:169–184

    PubMed  CAS  Google Scholar 

  17. Zimmer C (2007) Evolution. Jurassic genome. Science 315:1358–1359

    Article  PubMed  CAS  Google Scholar 

  18. Pyati UJ, Webb AE, Kimelman D (2005) Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132:2333–2343

    Article  PubMed  CAS  Google Scholar 

  19. Inohaya K, Takano Y, Kudo A (2007) The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 236:3031–3046

    Article  PubMed  CAS  Google Scholar 

  20. Renn J, Winkler C (2009) Osterix-mCherry transgenic medaka for in vivo imaging of bone formation. Dev Dyn 238:241–248

    Article  PubMed  CAS  Google Scholar 

  21. Inohaya K, Takano Y, Kudo A (2010) Production of Wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column in medaka. Development 137:1807–1813

    Article  PubMed  CAS  Google Scholar 

  22. Hirose S, Li M, Kojima T, de Freitas PH, Ubaidus S, Oda K, Saito C, Amizuka N (2007) A histological assessment on the distribution of the osteocytic lacunar canalicular system using silver staining. J Bone Miner Metab 25:374–382

    Article  PubMed  Google Scholar 

  23. Moss ML (1961) Studies of the acellular bone of teleost fish. I. Morphological and systematic variations. Acta Anat 46:343–362

    Article  PubMed  CAS  Google Scholar 

  24. Moss ML (1962) Studies of the acellular bone of teleost fish. II. Response to fracture under normal and acalcemic conditions. Acta Anat 48:46–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shizuko Ichinose and Dr. Akiko Himeno for their technical assistance. This work was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (14104015 and 22249061 to A.Y. and 21659426 to T.I.) and by a grant from the Japanese Ministry of Education, Global Center of Excellence (GCOE) Program, “International Research Center for Molecular Science in Tooth and Bone Diseases”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamaguchi.

About this article

Cite this article

Cao, L., Moriishi, T., Miyazaki, T. et al. Comparative morphology of the osteocyte lacunocanalicular system in various vertebrates. J Bone Miner Metab 29, 662–670 (2011). https://doi.org/10.1007/s00774-011-0268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0268-6

Keywords

Navigation