Skip to main content

Advertisement

Log in

Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

Diversität sulfatreduzierender Bakterien im Prozesswasser einer geothermischen Anlage

  • Fachbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Abstract

Abstract Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

Zusammenfassung

Die Verbesserung des Prozessverständnisses ist eine grundlegende Voraussetzung für eine Optimierung der Betriebssicherheit und der Ökonomie geothermischer Anlagen in Bezug auf die Partikelbildung und Korrosion. Daher wurden Prozessfluide einer Anlage im Molassebecken unter mikrobiologischen, geochemischen und mineralogischen Gesichtspunkten untersucht. Die Fluidtemperatur der vor und nach dem Wärmetauscher entnommenen Fluide betrug zwischen 103 °C und 61 °C. Die Salinität variierte zwischen 600 und 900 mg/l und der gelöste organische Kohlenstoff (DOC) lag zwischen 6,4 und 19,3 mg C/l. Die mikrobielle Lebensgemeinschaft in der Anlage wurde mithilfe einer genetischen Fingerprinting-Methode charakterisiert. Hierzu wurde das 16S rRNA Gen sowie die für sulfatreduzierende Bakterien (SRB) spezifische dissimilatorische Sulfitreduktase untersucht. In allen Fluidproben konnten Mikroorganismen nachgewiesen werden. Die Zuordnung der Organismen zu stoffwechselphysiologischen Gruppen lieferte Hinweise auf verschiedene biogeochemische Prozesse. Die Untersuchungen zeigen eine beachtliche Diversität von SRB auf. Diese sind für ihre Rolle bei biologisch induzierten Korrosions- und Fällungsprozessen bekannt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.J.: Basic local alignment search tool. Mol. Biol. 215(3), 403–410 (1990)

    Google Scholar 

  • Amann, R.I., Ludwig, W., Schleifer, K.-H.: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995)

    Google Scholar 

  • Baker, G.C., Cowan, D.A.: 16S rDNA primers and the unbiased assessment of thermophile diversity. Biochem. Soc. Trans. 32, 218–221 (2004)

    Article  Google Scholar 

  • Barton, L.L., Tomei, F.A.: Characteristics and activities of sulfate-reducing bacteria. In: Barton, L.L. (ed.) Sulfate-Reducing Bacteria. Biotechnology Handbooks, vol. 8. Plenum Press, New York (1995)

    Google Scholar 

  • Basso, O., Caumette, P., Magot, M.: Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int. J. Syst. Evol. Microbiol. 55(1), 101–104 (2005)

    Article  Google Scholar 

  • Beech, I.B., Sunner, J.: Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15, 181–186 (2004)

    Article  Google Scholar 

  • Bryant, M.P., Campbell, L.L., Reddy, C.A., Crabill, M.R.: Growth on desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33, 1162 (1977)

    Google Scholar 

  • Chivian, D., Brodie, E.L., Alm, E.J., Culley, D.E., Dehal, P.S., DeSantis, T.Z., Gihring, T.M., Lapidus, A., Lin, L.-H., Lowry, S.R., Moser, D.P., Richardson, P.M., Southam, G., Wanger, G., Pratt, L.M., Andersen, G.L., Hazen, T.C., Brockman, F.J., Arkin, A.P., Onstott, T.C.: Environmental genomics reveals a single-species ecosystem deep within earth. Science 322(5899), 275–278 (2008)

    Article  Google Scholar 

  • Coetser, S.E., Cloete, T.E.: Biofouling and biocorrosion in industrial water systems. Crit. Rev. Microbiol. 31(4), 213–232 (2005)

    Article  Google Scholar 

  • Dahle, H., Birkeland, N.-K.: Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int. J. Syst. Evol. Microbiol. 56, 1539–1545 (2006)

    Article  Google Scholar 

  • Flemming, H.C.: Biofouling in water systems—cases causes and countermeasures. Appl. Microbiol. Biotechnol. 59, 629–640 (2002)

    Article  Google Scholar 

  • Galouchko, A.S., Rozanova, E.P.: Sulfidogenic oxidation of acetate by a syntrophic association of anaerobic mesophilic bacteria. Microbiology 65(2), 134–139 (1996)

    Google Scholar 

  • Geets, J., Borremans, B., Diels, L., Springael, D., Vangronsveld, J., van der Lelie, D., Vanbroekhoven, K.: DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J. Microbiol. Methods 66(2), 194–205 (2006)

    Article  Google Scholar 

  • Honegger, J.L., Czernichowski-Lauriol, I., Criaud, A., Menjoz, A., Sainson, S., Guezennec, J.: Detailed study of sulfide scaling at la Courneuue Nord a geothermal exploitation of the Paris Basin, France. Geothermics 18(1–2), 137–144 (1989)

    Article  Google Scholar 

  • Huber, S.A., Frimmel, F.H.: Size-exclusion chromatography with organic carbon detection (LC-OCD): a fast and reliable method for the characterization of hydrophilic organic matter in natural waters. Vom Wasser 86, 277–290 (1996)

    Google Scholar 

  • Imachi, H., Sekiguchi, Y., Kamagata, Y., Loy, A., Qiu, Y.L., Hugenholtz, P., Kimura, N., Wagner, M., Ohashi, A., Harada, H.: Non-sulfate-reducing, syntrophic bacteria affiliated with desulfotomaculum cluster i are widely distributed in methanogenic environments. Appl. Environ. Microbiol. 72, 2080–2091 (2006)

    Article  Google Scholar 

  • Inagaki, F., Motomura, Y., Ogata, S.: Microbial silica deposition in geothermal hot waters. Appl. Microbiol. Biotechnol. 60, 605–611 (2003)

    Google Scholar 

  • Javerhadashti, R.: Microbiologically Influenced Corrosion. An Engineering Insight. Springer, London (2008)

    Google Scholar 

  • Jørgensen, B.B., Isaksen, M.F., Jannasch, H.: Bacterial sulfate-reduction above 100 °C in the deep-sea hydrothermal vent sediments. Science (1756–1757) (1992)

  • Kato, C., Li, L., Nogi, Y., Nakamura, Y., Tamaoka, J., Horikoshi, K.: Extremely barophilic bacteria isolated from the Mariana trench challenger deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64(4), 1510–1513 (1998)

    Google Scholar 

  • Kashefi, K., Lovley, D.R.: Extending the upper temperature limit for life. Science 301, 934 (2003)

    Article  Google Scholar 

  • Kimura, H., Nashimoto, H., Shimizu, M., Hattori, S., Yamada, K., Koba, K., Yoshida, N., Kato, K.: Microbial methane production in deep aquifer associated with the accretionary prism in Southwest Japan. ISME J. 4, 531–541 (2010)

    Article  Google Scholar 

  • Lerm, S., Alawi, M., Miethling-Graff, R., Seibt, A., Wolfgramm, M., Rauppach, K., Würdemann, H.: Mikrobiologisches Monitoring in zwei geothermisch genutzten Aquiferen Norddeutschlands. Z. Geol. Wissensch. (2011)

  • Little, B.J., Lee, J.S.: Microbiologically Influenced Corrosion. Wiley, Hoboken (2007)

    Book  Google Scholar 

  • Machel, H.G.: Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment. Geol. 140(1–2), 143–175 (2001)

    Article  Google Scholar 

  • Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H., Wawer, C.: Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans, A.D.L., van Elsas, J.D., de Bruijn, F.J. (eds.) Molecular Microbial Ecology Manual, vol. 3.4.4, pp. 1–27. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  • Nivens, D.E., Nichols, P.D., Henson, J.M., Geesey, G.G., White, D.C.: Reversible acceleration of the corrosion of AISI304 stainless steel exposed to seawater induced by growth of the marine bacterium Vibrio natriegens. Corrosion 42, 204–210 (1986)

    Article  Google Scholar 

  • Nilsen, R.K., Torsvik, T., Lien, T.: Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46, 397–402 (1996)

    Article  Google Scholar 

  • Pakchung, A.A.H., Simpson, P.J.L., Codd, R.: Life on earth. Extremophiles continue to move the goal posts. Environ. Chem. 3, 77–93 (2006)

    Article  Google Scholar 

  • Robinson, J.A., Tiedje, J.M.: Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137(1), 26–32 (1984)

    Article  Google Scholar 

  • Rosnes, J.T., Torsvik, T., Lien, T.: Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57(8), 2302–2307 (1991)

    Google Scholar 

  • Rothschild, L.J., Mancinelli, R.L.: Life in extreme environments. Nature 409, 1092–1101 (2001)

    Article  Google Scholar 

  • Sand, W.: Microbial life in geothermal waters. Geothermics 32, 655–667 (2003)

    Article  Google Scholar 

  • Schieber, J.: Sedimentary pyrite: a window into the microbial past. Geology 30(6), 531–534 (2002)

    Article  Google Scholar 

  • Schink, B., Stams, A.J.M.: Syntrophism among prokaryotes. In: The Procaryotes, pp. 2–57. Springer, New York (2002)

    Google Scholar 

  • Schreurs, M.L.: The health and care of wells. JAWWA 62(7), 434–436 (1970)

    Google Scholar 

  • Schröder, H., Hesshaus, A.: Abschlussbericht zum Forschungsvorhaben 0329937A. Langfristige Betriebssicherheit geothermischer Anlagen – Aspekte der langfristigen Betriebssicherheit und der zukünftigen Technologie geothermischer Anlagen in Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe (2009)

  • Sitte, J., Akob, D.M., Kaufmann, C., Finster, K., Banerjee, D., Burkhardt, E.-M., Kostka, J.E., Scheinost, A.C., Büchel, G., Küsel, K.: Microbial Links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Appl. Environ. Microbiol. 76, 3143–3152 (2010)

    Article  Google Scholar 

  • Sharma, A., Scott, J.H., Cody, J.D., Fogel, M.L., Hazen, R.M., Hemley, R.J., Huntress, W.T.: Microbial activity at gigapascal pressures. Science 295(5559), 1514–1516 (2002)

    Article  Google Scholar 

  • Takai, K., Komatsu, T., Inagaki, F., Horikoshi, K.: Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67, 3618–3629 (2001)

    Article  Google Scholar 

  • Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., Horikoshi, K.: Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. USA 105(31), 10949–10954 (2008)

    Article  Google Scholar 

  • Torsvik, V., Goksoyr, J., Daae, F.L.: High diversity of DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782–787 (1990)

    Google Scholar 

  • Valdez, B., Schorr, M., Quintero, M., Carrillo, M., Zlatev, R., Stoytcheva, M., de Dios Ocampo, J.: Corrosion and scaling at Cerro Prieto geothermal field. Anti-Corros. Methods Mater. 56(1), 28–34 (2009)

    Article  Google Scholar 

  • van Beek, C.G.E.M., Kooper, W.F.: The clogging of shallow discharge wells in the Netherlands river region. Ground Water 18(6), 578–586 (1980)

    Article  Google Scholar 

  • Walker, C.B., He, Z., Yang, Z.K., Ringbauer, J.A.Jr., He, Q., Zhou, J., Voordouw, G., Wall, J.D., Arkin, A.P., Hazen, T.C., Stolyar, S., Stahl, D.A.: The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J. Bacteriol. 191, 5793–5801 (2009)

    Article  Google Scholar 

  • Wimpenny, J., Manz, W., Szewzyk, U.: Heterogeneity in biofilms. FEMS Microbiol. Rev. 24, 661–671 (2000)

    Article  Google Scholar 

  • Würdemann, H., Möller, F., Kühn, M., Heidug, W., Christensen, N.P., Borm, G., Schilling, F.R., the CO2SINK group: CO2SINK-From site characterisation and risk assessment to monitoring and verification: one year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int. J. Greenhouse Gas Control 4(6), 938–951 (2010)

    Article  Google Scholar 

  • Wolfgramm, M., Seibt, A.: Zusammensetzung von Tiefenwässern in Deutschland und ihre Relevanz für geothermische Anlagen. GTV-Tagung, Karlsruhe, pp. 503–516 (2008)

  • Zettlitzer, M., Moeller, F., Morozova, D., Lokay, P., Würdemann, H.: Re-establishment of the proper injectivity of the CO2-injection well Ktzi 201 in Ketzin, Germany. Int. J. Greenhouse Gas Control 4(6), 952–959 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ben Cowie and Rona Miethling-Graff for proofreading the manuscript and helpful advices. This research was funded by the BMU project “AquiScreen” (Nr. 0327634): Betriebssicherheit der geothermischen Nutzung von Aquiferen unter besonderer Berücksichtigung mikrobiologischer Aktivität und Partikelumlagerungen—Screening an repräsentativen Standorten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Würdemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alawi, M., Lerm, S., Vetter, A. et al. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy. Grundwasser 16, 105–112 (2011). https://doi.org/10.1007/s00767-011-0164-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-011-0164-y

Keywords

Navigation