Skip to main content
Log in

Aktuelle Möglichkeiten und Evidenz roboterassistierter Eingriffe in der chirurgischen Onkologie

Potential and evidence for robot-assisted procedures in surgical oncology

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die roboterassistierte Chirurgie repräsentiert einen deutlichen Fortschritt in der minimal-invasiven Chirurgie, da sie viele technische Limitationen der konventionellen Laparoskopie überwindet. Aktuell kommt in der chirurgischen Onkologie überwiegend das Da-Vinci-Op.-System zum Einsatz, welches als „Master-Slave-System“ im Prinzip einem computerassistierten Telemanipulator entspricht. Trotz hoher Kosten und weitgehend fehlender klinischer Evidenz hat die Da-Vinci-assistierte Chirurgie in den letzten Jahren stetig an Bedeutung gewonnen und wird mit steigender Frequenz eingesetzt. Ziel dieser Übersichtsarbeit ist es, aktuelle Möglichkeiten in der roboterassistierten Chirurgie aufzuzeigen und die Evidenz für ausgewählte Eingriffe in der chirurgischen Onkologie zu diskutieren. Es handelt sich nicht um eine systematische Übersichtsarbeit oder Metaanalyse. Exemplarisch werden folgende Disziplinen betrachtet: Viszeralchirurgie, Thoraxchirurgie, Gynäkologie und Urologie.

Abstract

Robotic-assisted surgery represents a considerable improvement to minimally invasive surgery because it overcomes many technical limitations inherent to conventional laparoscopy. For soft tissues, the da Vinci robotic system is by far the most frequently used platform and represents, as a master–slave system, a computer-assisted telemanipulator. Despite its high costs and the lack of sound clinical evidence, there is an increasing interest in da Vinci surgery as indicated by the continuous rise in case numbers. The aim of this review, which is not a systematic review or meta-analysis, is to highlight recent applications of robotic-assisted surgery and to discuss the clinical evidence for selected interventions in surgical oncology. As examples, we focus on visceral and thoracic surgery, gynecology, and urology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Ahmed K, Ibrahim A, Wang TT et al (2012) Assessing the cost effectiveness of robotics in urological surgery—A systematic review. BJU Int 110:1544–1556

    Article  PubMed  Google Scholar 

  2. Asawabharuj K, Ramart P, Nualyong C et al (2014) Comparison of urinary continence outcome between robotic assisted laparoscopic prostatectomy versus laparoscopic radical prostatectomy. J Med Assoc Thai 97:393–398

    PubMed  Google Scholar 

  3. Asimakopoulos AD, Pereira Fraga CT, Annino F et al (2011) Randomized comparison between laparoscopic and robot-assisted nerve-sparing radical prostatectomy. J Sex Med 8:1503–1512

    Article  PubMed  Google Scholar 

  4. Barbash GI, Glied SA (2010) New technology and health care costs—The case of robot-assisted surgery. N Engl J Med 363:701–704

    Article  CAS  PubMed  Google Scholar 

  5. Bekelman JE, Rumble RB, Chen RC et al (2018) Clinically localized prostate cancer: ASCO clinical practice guideline endorsement of an American Urological Association/American Society for Radiation Oncology/Society of Urologic Oncology Guideline. J Clin Oncol. https://doi.org/10.1200/JCO.18.00606

    Article  PubMed  PubMed Central  Google Scholar 

  6. Binder J, Kramer W (2001) Robotically-assisted laparoscopic radical prostatectomy. BJU Int 87:408–410

    Article  CAS  Google Scholar 

  7. Bobo Z, Xin W, Jiang L et al (2019) Robotic gastrectomy versus laparoscopic gastrectomy for gastric cancer: Meta-analysis and trial sequential analysis of prospective observational studies. Surg Endosc 33:1033–1048

    Article  PubMed  Google Scholar 

  8. Breda A, Territo A, Gausa L et al (2018) Robot-assisted kidney transplantation: The European experience. Eur Urol 73:273–281

    Article  PubMed  Google Scholar 

  9. Cardenas-Goicoechea J, Wang Y, McGorray S et al (2019) Minimally invasive interval cytoreductive surgery in ovarian cancer: Systematic review and meta-analysis. J Robot Surg 13:23–33

    Article  PubMed  Google Scholar 

  10. Casarin J, Multinu F, Ubl DS et al (2018) Adoption of minimally invasive surgery and decrease in surgical morbidity for endometrial cancer treatment in the United States. Obstet Gynecol 131:304–311

    Article  PubMed  Google Scholar 

  11. Cheng CL, Rezac C (2018) The role of robotics in colorectal surgery. BMJ 360:j5304

    Article  PubMed  Google Scholar 

  12. Coughlin GD, Yaxley JW, Chambers SK et al (2018) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol 19:1051–1060

    Article  PubMed  Google Scholar 

  13. de Rooij T, van Hilst J, van Santvoort H et al (2019) Minimally invasive versus open distal pancreatectomy (LEOPARD): A multicenter patient-blinded randomized controlled trial. Ann Surg 269:2–9

    Article  PubMed  Google Scholar 

  14. Egberts JH, Biebl M, Perez DR et al (2019) Robot-assisted oesophagectomy: Recommendations towards a standardised Ivor Lewis procedure. J Gastrointest Surg. https://doi.org/10.1007/s11605-019-04207-y

    Article  PubMed  Google Scholar 

  15. Finkelstein J, Eckersberger E, Sadri H et al (2010) Open versus laparoscopic versus robot-assisted laparoscopic prostatectomy: The European and US experience. Rev Urol 12:35–43

    PubMed  PubMed Central  Google Scholar 

  16. Finley D, Sherman JH, Avila E et al (2014) Thorascopic resection of an apical paraspinal schwannoma using the da Vinci surgical system. J Neurol Surg A Cent Eur Neurosurg 75:58–63

    Article  PubMed  Google Scholar 

  17. Flebbe H, Beham AW, Schuler P et al (2018) Stellenwert des intraoperativen Neuromonitorings in der roboterassistierten Rektumchirurgie. Zentralbl Chir 143:215–219

    Article  PubMed  Google Scholar 

  18. Friedant AJ, Handorf EA, Su S et al (2016) Minimally invasive versus open thymectomy for thymic malignancies: Systematic review and meta-analysis. J Thorac Oncol 11:30–38

    Article  PubMed  Google Scholar 

  19. Gallotta V, Giudice MT, Conte C et al (2018) Minimally invasive salvage lymphadenectomy in gynecological cancer patients: A single institution series. Eur J Surg Oncol 44:1568–1572

    Article  PubMed  Google Scholar 

  20. Gkegkes ID, Mamais IA, Iavazzo C (2017) Robotics in general surgery: A systematic cost assessment. J Minim Access Surg 13:243–255

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grade M, Beham AW, Schuler P et al (2016) Pelvic intraoperative neuromonitoring during robotic-assisted low anterior resection for rectal cancer. J Robot Surg 10:157–160

    Article  PubMed  Google Scholar 

  22. Guerrini GP, Lauretta A, Belluco C et al (2017) Robotic versus laparoscopic distal pancreatectomy: An up-to-date meta-analysis. BMC Surg 17:105

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hemal AK, Kumar A (2009) A prospective comparison of laparoscopic and robotic radical nephrectomy for T1-2N0M0 renal cell carcinoma. World J Urol 27:89–94

    Article  PubMed  Google Scholar 

  24. Herlemann A, Cowan JE, Carroll PR et al (2018) Community-based outcomes of open versus robot-assisted radical prostatectomy. Eur Urol 73:215–223

    Article  PubMed  Google Scholar 

  25. van Hilst J, de Rooij T, Bosscha K et al (2019) Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): A multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 4:199–207

    Article  PubMed  Google Scholar 

  26. van Hilst J, Korrel M, de Rooij T et al (2019) Oncologic outcomes of minimally invasive versus open distal pancreatectomy for pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Eur J Surg Oncol 45:719–727

    Article  PubMed  Google Scholar 

  27. Holmer C, Kreis ME (2018) Systematic review of robotic low anterior resection for rectal cancer. Surg Endosc 32:569–581

    Article  PubMed  Google Scholar 

  28. Ilic D, Evans SM, Allan CA et al (2017) Laparoscopic and robotic-assisted versus open radical prostatectomy for the treatment of localised prostate cancer. Cochrane Database Syst Rev 9:CD9625

    PubMed  Google Scholar 

  29. Janda M, Gebski V, Davies LC et al (2017) Effect of total laparoscopic hysterectomy vs total abdominal hysterectomy on disease-free survival among women with stage I endometrial cancer: A randomized clinical trial. JAMA 317:1224–1233

    Article  PubMed  Google Scholar 

  30. Jayne D, Pigazzi A, Marshall H et al (2017) Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: The ROLARR randomized clinical trial. JAMA 318:1569–1580

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeong IG, Khandwala YS, Kim JH et al (2017) Association of robotic-assisted vs laparoscopic radical nephrectomy with perioperative outcomes and health care costs, 2003 to 2015. JAMA 318:1561–1568

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang Y, Zhao Y, Qian F et al (2018) The long-term clinical outcomes of robotic gastrectomy for gastric cancer: A large-scale single institutional retrospective study. Am J Transl Res 10:3233–3242

    PubMed  PubMed Central  Google Scholar 

  33. Jin D, Yao L, Yu J et al (2019) Robotic-assisted minimally invasive esophagectomy versus the conventional minimally invasive one: A meta-analysis and systematic review. Int J Med Robot 15:e1988

    Article  PubMed  Google Scholar 

  34. Jørgensen SL, Mogensen O, Wu C et al (2019) Nationwide introduction of minimally invasive robotic surgery for early-stage endometrial cancer and its association with severe complications. Jama Surg. https://doi.org/10.1001/jamasurg.2018.5840

    Article  PubMed  Google Scholar 

  35. Kajiwara N, Kakihana M, Usuda J et al (2012) Extended indications for robotic surgery for posterior mediastinal tumors. Asian Cardiovasc Thorac Ann 20:308–313

    Article  PubMed  Google Scholar 

  36. Keijzers M, Dingemans AM, Blaauwgeers H et al (2014) 8 years’ experience with robotic thymectomy for thymomas. Surg Endosc 28:1202–1208

    Article  PubMed  Google Scholar 

  37. Kim MJ, Park SC, Park JW et al (2018) Robot-assisted versus laparoscopic surgery for rectal cancer: A phase II open label prospective randomized controlled trial. Ann Surg 267:243–251

    Article  PubMed  Google Scholar 

  38. Kim SI, Cho JH, Seol A et al (2019) Comparison of survival outcomes between minimally invasive surgery and conventional open surgery for radical hysterectomy as primary treatment in patients with stage IB1-IIA2 cervical cancer. Gynecol Oncol 153:3–12

    Article  PubMed  Google Scholar 

  39. Kimmig R, Buderath P, Mach P et al (2017) Surgical treatment of early ovarian cancer with compartmental resection of regional lymphatic network and indocyanine-green-guided targeted compartmental lymphadenectomy (TCL, paraaortic part). J Gynecol Oncol 28:e41

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kimmig R, Ind T (2018) Minimally invasive surgery for cervical cancer: Consequences for treatment after LACC Study. J Gynecol Oncol 29:e75

    Article  PubMed  PubMed Central  Google Scholar 

  41. Klompmaker S, van Hilst J, Wellner UF et al (2018) Outcomes after minimally-invasive versus open pancreatoduodenectomy: A pan-European propensity score matched study. Ann Surg. https://doi.org/10.1097/SLA.0000000000002850

    Article  PubMed  Google Scholar 

  42. Kneuertz PJ, Kamel MK, Stiles BM et al (2017) Robotic thymectomy is feasible for large thymomas: A propensity-matched comparison. Ann Thorac Surg 104:1673–1678

    Article  PubMed  Google Scholar 

  43. Lee SH, Seo HJ, Lee NR et al (2017) Robot-assisted radical prostatectomy has lower biochemical recurrence than laparoscopic radical prostatectomy: Systematic review and meta-analysis. Investig Clin Urol 58:152–163

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2017) S3-Leitlinie Kolorektales Karzinom, Langversion 2.0. http://www.leitlinienprogramm-onkologie.de/leitlinien/kolorektales-karzinom/. Zugegriffen: 1. Dez. 2018 (AWMF Registrierungsnummer: 021/007OL)

    Google Scholar 

  45. Leow JJ, Heah NH, Chang SL et al (2016) Outcomes of robotic versus laparoscopic partial nephrectomy: An updated meta-analysis of 4,919 patients. J Urol 196:1371–1377

    Article  PubMed  Google Scholar 

  46. Li JT, Liu PY, Huang J et al (2019) Perioperative outcomes of radical lobectomies using robotic-assisted thoracoscopic technique vs. video-assisted thoracoscopic technique: Retrospective study of 1,075 consecutive p‑stage I non-small cell lung cancer cases. J Thorac Dis 11:882–891

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu J, Zheng HL, Li P et al (2018) A propensity score-matched comparison of robotic versus laparoscopic gastrectomy for gastric cancer: Oncological, cost, and surgical stress analysis. J Gastrointest Surg 22:1152–1162

    Article  PubMed  Google Scholar 

  48. Lucidi A, Chiantera V, Gallotta V et al (2017) Role of robotic surgery in ovarian malignancy. Best Pract Res Clin Obstet Gynaecol 45:74–82

    Article  CAS  PubMed  Google Scholar 

  49. Marulli G, Comacchio GM, Schiavon M et al (2018) Comparing robotic and trans-sternal thymectomy for early-stage thymoma: A propensity score-matching study. Eur J Cardiothorac Surg 54:579–584

    Article  PubMed  Google Scholar 

  50. Marulli G, Maessen J, Melfi F et al (2016) Multi-institutional European experience of robotic thymectomy for thymoma. Ann Cardiothorac Surg 5:18–25

    PubMed  PubMed Central  Google Scholar 

  51. Marulli G, Rea F, Melfi F et al (2012) Robot-aided thoracoscopic thymectomy for early-stage thymoma: A multicenter European study. J Thorac Cardiovasc Surg 144:1125–1130

    Article  PubMed  Google Scholar 

  52. Masson-Lecomte A, Yates DR, Hupertan V et al (2013) A prospective comparison of the pathologic and surgical outcomes obtained after elective treatment of renal cell carcinoma by open or robot-assisted partial nephrectomy. Urol Oncol 31:924–929

    Article  PubMed  Google Scholar 

  53. Melamed A, Margul DJ, Chen L et al (2018) Survival after minimally invasive radical hysterectomy for early-stage cervical cancer. N Engl J Med 379:1905–1914

    Article  PubMed  PubMed Central  Google Scholar 

  54. Melfi FM, Fanucchi O, Davini F et al (2014) Robotic lobectomy for lung cancer: Evolution in technique and technology. Eur J Cardiothorac Surg 46:626–630

    Article  PubMed  Google Scholar 

  55. Nasioudis D, Minis E, Chapman-Davis E et al (2019) Minimally invasive staging of apparent stage I malignant ovarian germ cell tumors: Prevalence and outcomes. J Minim Invasive Gynecol 26:471–476

    Article  PubMed  Google Scholar 

  56. Ng CSH, MacDonald JK, Gilbert S et al (2019) Optimal approach to lobectomy for non-small cell lung cancer: Systemic review and meta-analysis. Innovations (Phila) 14:90–116

    Article  Google Scholar 

  57. Ojima T, Nakamura M, Nakamori M et al (2018) Robotic versus laparoscopic gastrectomy with lymph node dissection for gastric cancer: Study protocol for a randomized controlled trial. Trials 19:409

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pacchiarotti G, Wang MY, Kolcun JPG et al (2017) Robotic paravertebral schwannoma resection at extreme locations of the thoracic cavity. Neurosurg Focus 42:E17

    Article  PubMed  Google Scholar 

  59. Paley PJ, Veljovich DS, Shah CA et al (2011) Surgical outcomes in gynecologic oncology in the era of robotics: Analysis of first 1000 cases. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2011.01.059

    Article  PubMed  PubMed Central  Google Scholar 

  60. Parekh DJ, Reis IM, Castle EP et al (2018) Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): An open-label, randomised, phase 3, non-inferiority trial. Lancet 391:2525–2536

    Article  Google Scholar 

  61. Park JS, Choi GS, Park SY et al (2012) Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg 99:1219–1226

    Article  CAS  Google Scholar 

  62. Park JS, Kang H, Park SY et al (2018) Long-term oncologic after robotic versus laparoscopic right colectomy: A prospective randomized study. Surg Endosc. https://doi.org/10.1007/s00464-018-6563-8

    Article  Google Scholar 

  63. Park SY, Kim DJ, Yu WS et al (2016) Robot-assisted thoracoscopic esophagectomy with extensive mediastinal lymphadenectomy: Experience with 114 consecutive patients with intrathoracic esophageal cancer. Dis Esophagus 29:326–332

    Article  CAS  PubMed  Google Scholar 

  64. Prete FP, Pezzolla A, Prete F et al (2018) Robotic versus laparoscopic minimally invasive surgery for rectal cancer: A systematic review and meta-analysis of randomized controlled trials. Ann Surg 267:1034–1046

    Article  PubMed  Google Scholar 

  65. Ramirez PT, Frumovitz M, Pareja R et al (2018) Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N Engl J Med 379:1895–1904

    Article  Google Scholar 

  66. Renz M, Diver E, English D et al (2019) Sentinel lymph node biopsies in endometrial cancer: Practice patterns among gynecologic oncologists in the United States. J Minim Invasive Gynecol. https://doi.org/10.1016/j.jmig.2019.04.006

    Article  PubMed  Google Scholar 

  67. Rueckert J, Swierzy M, Badakhshi H et al (2015) Robotic-assisted thymectomy: Surgical procedure and results. Thorac Cardiovasc Surg 63:194–200

    Article  PubMed  Google Scholar 

  68. Rueckert JC, Swierzy M, Neudecker J et al (2016) Die roboter-assistierte Thymektomie – Ergebnisse bei 500 Operationen. Zentralbl Chir. https://doi.org/10.1055/s-0036-1587548

    Article  Google Scholar 

  69. Schiemer JF, Zimniak L, Grimminger P et al (2018) Robot-guided neuromapping during nerve-sparing taTME for low rectal cancer. Int J Colorectal Dis 33:1803–1805

    Article  PubMed  Google Scholar 

  70. Shadmehr MB, Gaissert HA, Wain JC et al (2003) The surgical approach to “dumbbell tumors” of the mediastinum. Ann Thorac Surg 76:1650–1654

    Article  PubMed  Google Scholar 

  71. Shin SH, Kim YJ, Song KB et al (2017) Totally laparoscopic or robot-assisted pancreaticoduodenectomy versus open surgery for periampullary neoplasms: Separate systematic reviews and meta-analyses. Surg Endosc 31:3459–3474

    Article  PubMed  Google Scholar 

  72. van der Sluis PC, van der Horst S, May AM et al (2019) Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: A randomized controlled trial. Ann Surg 269:621–630

    Article  PubMed  Google Scholar 

  73. Sodergren MH, Darzi A (2013) Robotic cancer surgery. Br J Surg 100:3–4

    Article  CAS  PubMed  Google Scholar 

  74. Solaini L, Bazzocchi F, Cavaliere D et al (2018) Robotic versus laparoscopic right colectomy: An updated systematic review and meta-analysis. Surg Endosc 32:1104–1110

    Article  PubMed  Google Scholar 

  75. Tang K, Jiang K, Chen H et al (2017) Robotic vs. retropubic radical prostatectomy in prostate cancer: A systematic review and an meta-analysis update. Oncotarget 8:32237–32257

    PubMed  Google Scholar 

  76. Thompson JE, Egger S, Bohm M et al (2018) Superior biochemical recurrence and long-term quality-of-life outcomes are achievable with robotic radical prostatectomy after a long learning curve-Updated analysis of a prospective single-surgeon cohort of 2206 consecutive cases. Eur Urol 73:664–671

    Article  PubMed  Google Scholar 

  77. Tooher R, Swindle P, Woo H et al (2006) Laparoscopic radical prostatectomy for localized prostate cancer: A systematic review of comparative studies. J Urol 175:2011–2017

    Article  PubMed  Google Scholar 

  78. Tsuda S, Oleynikov D, Gould J et al (2015) SAGES TAVAC safety and effectiveness analysis: da Vinci (R) surgical system (Intuitive Surgical, Sunnyvale, CA). Surg Endosc 29:2873–2884

    Article  PubMed  Google Scholar 

  79. Vercellino GF, Erdemoglu E, Lichtenberg P et al (2019) A GCIG international survey: Clinical practice patterns of sentinel lymph node biopsies in cervical cancer. Arch Gynecol Obstet 300(1):191–199. https://doi.org/10.1007/s00404-019-05164-2

    Article  CAS  PubMed  Google Scholar 

  80. Veronesi G, Solinas M (2017) From manual to robotic video-assisted resection of posterior mediastinal masses. J Thorac Dis 9:2884–2887

    Article  PubMed  PubMed Central  Google Scholar 

  81. Visser E, Markar SR, Ruurda JP et al (2019) Prognostic value of lymph node yield on overall survival in esophageal cancer patients: A systematic review and meta-analysis. Ann Surg 269:261–268

    Article  PubMed  Google Scholar 

  82. Walker JL, Piedmonte MR, Spirtos NM et al (2012) Recurrence and survival after random assignment to laparoscopy versus laparotomy for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group LAP2 Study. J Clin Oncol 30:695–700

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wei B, Cerfolio RJ (2017) Robotic lobectomy and segmentectomy: Technical details and results. Surg Clin North Am 97:771–782

    Article  PubMed  Google Scholar 

  84. Wei B, Eldaif SM, Cerfolio RJ (2016) Robotic lung resection for non-small cell lung cancer. Surg Oncol Clin N Am 25:515–531

    Article  PubMed  Google Scholar 

  85. Wilshire CL, Vallieres E, Shultz D et al (2016) Robotic resection of 3 cm and larger thymomas is associated with low perioperative morbidity and mortality. Innovations (Phila) 11:321–326

    Article  Google Scholar 

  86. Wilson JL, Louie BE, Cerfolio RJ et al (2014) The prevalence of nodal upstaging during robotic lung resection in early stage non-small cell lung cancer. Ann Thorac Surg 97:1901–1906 (discussion 1906–1907)

    Article  PubMed  Google Scholar 

  87. Wright JD (2017) Robotic-assisted surgery: Balancing evidence and implementation. JAMA 318:1545–1547

    Article  PubMed  Google Scholar 

  88. Wright JD, Tergas AI, Hou JY et al (2016) Effect of regional hospital competition and hospital financial status on the use of robotic-assisted surgery. JAMA Surg 151:612–620

    Article  PubMed  Google Scholar 

  89. Yang HX, Woo KM, Sima CS et al (2017) Long-term survival based on the surgical approach to lobectomy for clinical stage I nonsmall cell lung cancer: Comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy. Ann Surg 265:431–437

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yaxley JW, Coughlin GD, Chambers SK et al (2016) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: Early outcomes from a randomised controlled phase 3 study. Lancet 388:1057–1066

    Article  PubMed  Google Scholar 

  91. Ye B, Li W, Ge XX et al (2014) Surgical treatment of early-stage thymomas: Robot-assisted thoracoscopic surgery versus transsternal thymectomy. Surg Endosc 28:122–126

    Article  PubMed  Google Scholar 

  92. Zhao W, Liu C, Li S et al (2018) Safety and efficacy for robot-assisted versus open pancreaticoduodenectomy and distal pancreatectomy: A systematic review and meta-analysis. Surg Oncol 27:468–478

    Article  PubMed  Google Scholar 

  93. Zimmerman AM, Roye DG, Charpentier KP (2018) A comparison of outcomes between open, laparoscopic and robotic pancreaticoduodenectomy. HPB (Oxford) 20:364–369

    Article  Google Scholar 

  94. Zirafa CC, Romano G, Key TH et al (2019) The evolution of robotic thoracic surgery. Ann Cardiothorac Surg 8:210–217

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Grade.

Ethics declarations

Interessenkonflikt

J.-H. Egberts, L. Trojan, J.‑C. Rückert und R. Kimmig sind als Proctor für Intuitive Surgical tätig. M. Grade erhielt ein Vortragshonorar von Intuitive Surgical. H. Flebbe, F.S. Franke, I.V. Popeneciu, A. Elsner und B. M. Ghadimi geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grade, M., Flebbe, H., Franke, F.S. et al. Aktuelle Möglichkeiten und Evidenz roboterassistierter Eingriffe in der chirurgischen Onkologie. Onkologe 25 (Suppl 1), 14–27 (2019). https://doi.org/10.1007/s00761-019-0622-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-019-0622-1

Schlüsselwörter

Keywords

Navigation