Skip to main content

Advertisement

Log in

Expression of cationic amino acid transporters in pig skeletal muscles during postnatal development

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The cationic amino acid transporter (CAT) protein family transports lysine and arginine in cellular amino acid pools. We hypothesized that CAT expression changes in pig skeletal muscles during rapid pig postnatal development. We aimed to investigate the tissue distribution and changes in the ontogenic expression of CATs in pig skeletal muscles during postnatal development. Six piglets at 1, 12, 26, 45, and 75 days old were selected from six litters, and their longissimus dorsi (LD), biceps femoris (BF), and rhomboideus (RH) muscles, and their stomach, duodenum, jejunum, ileum, colon, liver, kidney, heart, and cerebrum were collected. CAT-1 was expressed in all the 12 tissues investigated. CAT-2 (CAT-2A isoform) expression was highest in the skeletal muscle and liver and lowest in the jejunum, ileum, kidney, and heart. CAT-3 was expressed mainly in the colon and detected in the jejunum, ileum, and cerebrum. The CAT-1 expression was higher in the skeletal muscle of day 1 pigs than in that of older pigs (P < 0.05). The CAT-2 mRNA level was lowest at day 1, but increased with postnatal development (P < 0.05). There was no significant change in CAT-1 expression among the LD, BF, and RH during postnatal development (P > 0.05); however, there was a change in CAT-2 expression. The CAT-2 expression was highest in the LD of 12-, 26-, 45-, and 75-day-old pigs, followed by the BF and RH (P < 0.05). These results suggest that CAT-1 and CAT-2 play different roles in pig skeletal muscles during postnatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Capanni C, Squarzoni S, Petrini S et al (1998) Increase of neuronal nitric oxide synthase in rat skeletal muscle during ageing. Biochem Biophys Res Commun 245:216–219. doi:10.1006/bbrc.1998.8404

    Article  CAS  PubMed  Google Scholar 

  • Chang WJ, Iannaccone ST, Lau KS et al (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci USA 93:9142–9147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70:43–77

    CAS  PubMed  Google Scholar 

  • Christova T, Grozdanovic Z, Gossrau R (1997) Nitric oxide synthase (NOS) I during postnatal development in rat and mouse skeletal muscle. Acta Histochem 99:311–324. doi:10.1016/S0065-1281(97)80025-6

    Article  CAS  PubMed  Google Scholar 

  • Closs EI, Lyons CR, Kelly C, Cunningham JM (1993) Characterization of the third member of the MCAT family of cationic amino acid transporters. Identification of a domain that determines the transport properties of the MCAT proteins. J Biol Chem 268:20796–20800

    CAS  PubMed  Google Scholar 

  • Closs EI, Gräf P, Habermeier A, Cunningham JM, Förstermann U (1997) Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry 36:6462–6468. doi:10.1021/bi962829p

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Zharikov S, Xia SL, Anderson SI, Law AS, Archibald AL, Block ER (2005) Molecular cloning, characterization, and chromosomal assignment of porcine cationic amino acid transporter-1. Genomics 85:352–359. doi:10.1016/j.ygeno.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  • Davies AS (1972) Postnatal changes in the histochemical fibre types of procine skeletal muscle. J Anat 113:213–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis TA, Fiorotto ML, Nguyen HV, Reeds PJ (1989) Protein turnover in skeletal muscle of suckling rats. Am J Physiol 257:R1141–R1146

    CAS  PubMed  Google Scholar 

  • Fowden AL, Apatu RS, Silver M (1995) The glucogenic capacity of the fetal pig: developmental regulation by cortisol. Exp Physiol 80:457–467. doi:10.1113/expphysiol.1995.sp003860

    Article  CAS  PubMed  Google Scholar 

  • Goldspink DF, Kelly FJ (1984) Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senility. Biochem J 217:507–516. doi:10.1042/bj2170507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison AP, Latorre R, Dauncey MJ (1997) Postnatal development and differentiation of myofibres in functionally diverse porcine skeletal muscles. Reprod Fertil Dev 9:731–740. doi:10.1071/R97026

    Article  CAS  PubMed  Google Scholar 

  • Heo J, Kattesh HG, Roberts MP, Schneider JF (2003) Plasma levels of cortisol and corticosteroid-binding globulin (CBG) and hepatic CBG mRNA expression in pre- and postnatal pigs. Domest Anim Endocrinol 25:263–273. doi:10.1016/S0739-7240(03)00055-9

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa H, Sawamura T, Kobayashi S, Ninomiya H, Miwa S, Masaki T (1997) Cloning and characterization of a brain-specific cationic amino acid transporter. J Biol Chem 272:8717–8722. doi:10.1074/jbc.272.13.8717

    Article  CAS  PubMed  Google Scholar 

  • Humphrey BD, Stephensen CB, Calvert CC, Klasing KC (2004) Glucose and cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comp Biochem Physiol Part A Mol Integr Physiol 138:515–525. doi:10.1016/j.cbpb.2004.06.016

    Article  Google Scholar 

  • Ishida A, Kyoya T, Nakashima K, Katsumata M (2011) Muscle protein metabolism during compensatory growth with changing dietary lysine levels from deficient to sufficient in growing rats. J Nutr Sci Vitaminol 57:401–408

    Article  CAS  PubMed  Google Scholar 

  • Ishida A, Ashihara A, Nakashima K, Katsumata M (2013) Expression of amino acid transporter in porcine skeletal muscles during postnatal development. EAAP publication No. 134, pp 395–396 (abs.)

  • Ito K, Groudine M (1997) A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J Biol Chem 272:26780–26786. doi:10.1074/jbc.272.42.26780

    Article  CAS  PubMed  Google Scholar 

  • Kakuda DK, Finley KD, Maruyama M, MacLeod CL (1998) Stress differentially induces cationic amino acid transporter gene expression. Biochim Biophys Acta 1414:75–84. doi:10.1016/S0005-2736(98)00155-2

    Article  CAS  PubMed  Google Scholar 

  • Karlsson A, Enfalt AC, Essen-Gustavsson B, Lundstrom K, Rydhmer L, Stern S (1993) Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs. J Anim Sci 71:930–938. doi:10.2527/1993.714930x

    Article  CAS  PubMed  Google Scholar 

  • Katsumata M, Yamaguchi T, Ishida A, Ashihara A (2017) Changes in muscle fiber type and expression of mRNA of myosin heavy chain protein isoforms in porcine muscle during pre and postnatal development. Anim Sci J 88:364–371. doi:10.1111/asj.12641

    Article  CAS  PubMed  Google Scholar 

  • Kattesh HG, Charles SF, Baumbach GA, Gillespie BE (1990) Plasma cortisol distribution in the pig from birth to six weeks of age. Biol Neonate 58:220–226

    Article  CAS  PubMed  Google Scholar 

  • Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372:546–548. doi:10.1038/372546a0

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur L, Vigneron P (1986) Post-natal changes in some histochemical and enzymatic characteristics of three pig muscles. Meat Sci 16:199–216. doi:10.1016/0309-1740(86)90026-4

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur L, Ecolan P, Plantard L, Gueguen N (2002) New insights into muscle fiber types in the pig. J Histochem Cytochem 50:719–730. doi:10.1177/002215540205000513

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur L, Lebret B, Ecolan P et al (2011) Muscle characteristics and meat quality traits are affected by divergent selection on residual feed intake in pigs1. J Anim Sci 89:996–1010. doi:10.2527/jas.2010-3493

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hatzoglou M (1998) Control of expression of the gene for the arginine transporter Cat-1 in rat liver cells by glucocorticoids and insulin. Amino Acids 15:321–337. doi:10.1007/bf01320897

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Li Y, Zhang W, Fu Q, Liu N, Zhou G (2015) Activity and expression of nitric oxide synthase in pork skeletal muscles. Meat Sci 99:25–31. doi:10.1016/j.meatsci.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • MacLeod CL, Kakuda DK (1996) Regulation of CAT: cationic amino acid transporter gene expression. Amino Acids 11:171–191. doi:10.1007/bf00813859

    CAS  PubMed  Google Scholar 

  • McConell GK, Bradley SJ, Stephens TJ, Canny BJ, Kingwell BA, Lee-Young RS (2007) Skeletal muscle nNOSμ protein content is increased by exercise training in humans. Am J Physiol Regul Integr Comp Physiol 293:R821–R828. doi:10.1152/ajpregu.00796.2006

    Article  CAS  PubMed  Google Scholar 

  • Nygard A-B, Jørgensen CB, Cirera S, Fredholm M (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8:67. doi:10.1186/1471-2199-8-67

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn L, Verrey F (1999) Amino acid transport of y+ L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18:49–57. doi:10.1093/emboj/18.1.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stathopulos PB, Lu X, Shen J et al (2001) Increased l-arginine uptake and inducible nitric oxide synthase activity in aortas of rats with heart failure. Am J Physiol Heart Circ Physiol 280:H859–H867

    CAS  PubMed  Google Scholar 

  • Suzuki A, Cassens RG (1980) A histochemical study of myofiber types in muscle of the growing pig. J Anim Sci 51:1449–1461. doi:10.2134/jas1981.5161449x

    Article  CAS  PubMed  Google Scholar 

  • Uddin MJ, Cinar MU, Tesfaye D, Looft C, Tholen E, Schellander K (2011) Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues. BMC Res Notes 4:441. doi:10.1186/1756-0500-4-441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2003) CATs and HATs: the SLC7 family of amino acid transporters. Pflügers Arch 447:532–542. doi:10.1007/s00424-003-1086-z

    Article  PubMed  Google Scholar 

  • Zhi A, Feng D, Zhou X et al (2008) Molecular cloning, tissue distribution and segmental ontogenetic regulation of b[0, +] amino acid transporter in lantang pigs. Asian Aust J Anim Sci 21:9

    Article  Google Scholar 

  • Zou S, Zhi A, Zhou X et al (2009) Molecular cloning, segmental distribution and ontogenetic regulation of cationic amino acid transporter 2 in pigs. Asian Aust J Anim Sci 22:712–720

    Article  CAS  Google Scholar 

  • Zuo J, Xia W, Xu M et al (2013) Molecular cloning, tissue distribution and expression of the porcine cationic amino acid transporter CAT3. J Anim Vet Adv 12:1070–1077. doi:10.3923/javaa.2013.1070.1077

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the animal care team of the Pig Unit of NARO for the care of the pigs and support for the sample collections. Part of this work was previously published as an abstract and presented as a poster at the 4th EAAP International Symposium on Energy and Protein Metabolism and Nutrition, 9–12 September, California, USA (Ishida et al. 2013). In this research, we used the supercomputer of the Agriculture, Forestry and Fisheries Research IT (AFFRIT), Ministry of Agriculture, Forestry, and Fisheries (MAFF), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiko Ishida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Funding

This work was partially supported by a Grant-in-Aid for Young Scientists (B) (Grant No. 26850170) from the Ministry of Education, Science and Culture, Japan.

Additional information

Handling Editor: E. I. Closs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 2985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, A., Ashihara, A., Nakashima, K. et al. Expression of cationic amino acid transporters in pig skeletal muscles during postnatal development. Amino Acids 49, 1805–1814 (2017). https://doi.org/10.1007/s00726-017-2478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2478-2

Keywords

Navigation