Skip to main content
Log in

Triple serine loop region regulates the aspartate racemase activity of the serine/aspartate racemase family

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150–152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11–683-fold higher k cat and 28–351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150–152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AspR:

Aspartate racemase

BCA:

Bicinchoninic Acid

EST:

Expressed sequence tag

PLP:

Pyridoxal 5′-phosphate

SDH:

Serine dehydratase

SerR:

Serine racemase

References

  • Abe H, Yoshikawa N, Sarower MG, Okada S (2005) Physiological function and metabolism of free d-alanine in aquatic animals. Biol Pharm Bull 28(9):1571–1577

    Article  CAS  PubMed  Google Scholar 

  • Abe K, Takahashi S, Muroki Y, Kera Y, Yamada RH (2006) Cloning and expression of the pyridoxal 5′-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. J Biochem 139(2):235–244

    Article  CAS  PubMed  Google Scholar 

  • Corrigan JJ, Srinivasan NG (1966) The occurrence of certain d-amino acids in insects. Biochemistry 5(4):1185–1190

    Article  CAS  PubMed  Google Scholar 

  • D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234

    Article  PubMed  Google Scholar 

  • de Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-d-aspartate (NMDA) receptor coagonist d-serine. Proc Natl Acad Sci 99(22):14542–14547

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, Li P, Toney MD, Kartvelishvily E, Wolosker H (2005) Serine racemase modulates intracellular dd-serine levels through an α, β-elimination activity. J Biol Chem 280(3):1754–1763

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Yamauchi T, Kamiya N, Miyahara I, Yoshimura T, Mihara H, Kurihara T, Hirotsu K, Esaki N (2009) Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J Biol Chem 284(38):25944–25952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamase K, Morikawa A, Zaitsu K (2002) d-Amino acids in mammals and their diagnostic value. J Chromatogr B 781(1):73–91

    Article  CAS  Google Scholar 

  • Ito T, Maekawa M, Hayashi S, Goto M, Hemmi H, Yoshimura T (2013) Catalytic mechanism of serine racemase from Dictyostelium discoideum. Amino Acids 44(3):1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Hayashida M, Kobayashi S, Muto N, Hayashi A, Yoshimura T, Mori H (2016) Serine racemase is involved in d-aspartate biosynthesis. Journal of Biochemistry 160(6):345–353

    Article  CAS  PubMed  Google Scholar 

  • Jiraskova-Vanickova J, Ettrich R, Vorlova B, E Hoffman H, Lepsik M, Jansa P, Konvalinka J (2011) Inhibition of human serine racemase, an emerging target for medicinal chemistry. Curr Drug Targets 12(7):1037–1055

    Article  CAS  PubMed  Google Scholar 

  • Katane M, Homma H (2011) d-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3108–3121

    Article  CAS  PubMed  Google Scholar 

  • Katane M, Saitoh Y, Uchiyama K, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Uda K, Homma H (2016) Characterization of a homologue of mammalian serine racemase from Caenorhabditis elegans: the enzyme is not critical for the metabolism of serine in vivo. Genes Cells 21(9):966–977

    Article  CAS  PubMed  Google Scholar 

  • Okuma E, Fujita E, Amano H, Noda H, Abe H (1995) Distribution of free d-amino acids in the tissues of crustaceans. Fish Sci 61(1):157–160

    Article  CAS  Google Scholar 

  • Preston R (1987) Occurrence of d-amino acids in higher organisms: a survey of the distribution of d-amino acids in marine invertebrates. Comp Biochem Physiol Part B Comp Biochem 87(1):55–62

    Article  Google Scholar 

  • Radkov AD, Moe LA (2014) Bacterial synthesis of d-amino acids. Appl Microbiol Biotechnol 98(12):5363–5374. doi:10.1007/s00253-014-5726-3

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg H, Ennor AH (1961) The occurrence of free d-serine in the earthworm. Biochem J 79(2):424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh Y, Katane M, Kawata T, Maeda K, Sekine M, Furuchi T, Kobuna H, Sakamoto T, Inoue T, Arai H (2012) Spatiotemporal localization of d-amino acid oxidase and d-aspartate oxidases during development in Caenorhabditis elegans. Mol Cell Biol 32(10):1967–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Tomoyuki T, Uda K (2003) Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica. FEBS Lett 533:95–98

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uda K, Suzuki T (2007) A novel arginine kinase with substrate specificity towards d-arginine. Protein J 26(5):281–291

    Article  CAS  PubMed  Google Scholar 

  • Uda K, Abe K, Dehara Y, Mizobata K, Sogawa N, Akagi Y, Saigan M, Radkov AD, Moe LA (2016) Distribution and evolution of the serine/aspartate racemase family in invertebrates. Amino Acids 48(2):387–402

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ota N, Romanova EV, Sweedler JV (2011) A novel pyridoxal 5′-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system. J Biol Chem 286(15):13765–13774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96(23):13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Střı́šovský K, Jirásková J, Bařinka C, Majer P, Rojas C, Slusher BS, Konvalinka J (2003) Mouse brain serine racemase catalyzes specific elimination of l-serine to pyruvate. FEBS Lett 535(1–3):44–48

    PubMed  Google Scholar 

  • Yoshikawa N, Okada S, Abe H (2009) Molecular characterization of alanine racemase in the Kuruma prawn Marsupenaeus japonicus. J Biochem 145(2):249–258

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa N, Ashida W, Hamase K, Abe H (2011) HPLC determination of the distribution of d-amino acids and effects of ecdysis on alanine racemase activity in kuruma prawn Marsupenaeus japonicus. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3283–3288

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Esak N (2003) Amino acid racemases: functions and mechanisms. J Biosci Bioeng 96(2):103–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research in Japan to KU (24770068 and 15K07152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouji Uda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This study did not require informed consent.

Additional information

Handling Editor: C. Schiene-Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 kb)

Supplementary material 2 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uda, K., Abe, K., Dehara, Y. et al. Triple serine loop region regulates the aspartate racemase activity of the serine/aspartate racemase family. Amino Acids 49, 1743–1754 (2017). https://doi.org/10.1007/s00726-017-2472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2472-8

Keywords

Navigation