Skip to main content
Log in

Role of amino acid residues surrounding the phosphorylation site in peptide substrates of G protein-coupled receptor kinase 2 (GRK2)

  • Short Communication
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A series of amino acid substitutions was made in a previously identified β-tubulin-derived GRK2 substrate peptide (404DEMEFTEAESNMN416) to examine the role of amino acid residues surrounding the phosphorylation site. Anionic amino acid residues surrounding the phosphorylation site played an important role in the affinity for GRK2. Compared to the original peptide, a modified peptide (Ac-EEMEFSEAEANMN-NH2) exhibited markedly higher affinity for GRK2, but very low affinity for GRK5, suggesting that it can be a sensitive and selective peptide for GRK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Asai D, Toita R, Murata M, Katayama Y, Nakashima H, Kang JH (2014) Peptide substrates for G protein-coupled receptor kinase 2. FEBS Lett 588:2129–2132

    Article  CAS  PubMed  Google Scholar 

  • Brinks H, Koch WJ (2010) βARKct: a therapeutic approach for improved adrenergic signaling and function in heart disease. J Cardiovasc Trans Res 3:499–506

    Article  Google Scholar 

  • Cannavo A, Liccardo D, Koch WJ (2013) Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 4:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Cant SH, Pitcher JA (2005) G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 16:3088–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinudom A, Fotia AB, Lefkowitz RJ, Young JA, Kumar S, Cook DI (2004) The kinase Grk2 regulates Nedd4/Nedd4-2-dependent control of epithelial Na+ channels. Proc Natl Acad Sci USA 101:11886–11890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredericks ZL, Pitcher JA, Lefkowitz RJ (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human β2-adrenergic receptor. J Biol Chem 271:13796–13803

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Gonzalo P, Pitcher JA, Claing A, Lavergne JP, Reboud JP, Lefkowitz RJ (2002) β2-Adrenergic receptor stimulated, G protein-coupled receptor kinase 2 mediated, phosphorylation of ribosomal protein P2. Biochemistry 41:12850–12857

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    Article  CAS  PubMed  Google Scholar 

  • Haga K, Ogawa H, Murofushi H (1998) GTP-binding-protein-coupled receptor kinase 2 (GRK2) binds and phosphorylates tubulin. Eur J Biochem 255:363–368

    Article  CAS  PubMed  Google Scholar 

  • Hildreth KL, Wu JH, Barak LS, Exum ST, Kim LK, Peppel K, Freedman NJ (2004) Phosphorylation of the platelet-derived growth factor receptor-beta by G protein-coupled receptor kinase-2 reduces receptor signaling and interaction with the Na+/H+ exchanger regulatory factor. J Biol Chem 279:41775–41782

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Cocolakis E, Duman VM, Posner BI, Laporte SA, Lebrun JJ (2005) The G protein-coupled receptor kinase-2 is a TGFβ-inducible antagonist of TGFβ signal transduction. EMBO J 24:3247–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahsai AW, Zhu S, Fenteany G (2010) G protein-coupled receptor kinase 2 activates radixin, regulating membrane protrusion and motility in epithelial cells. Biochem Biophys Acta 1803:300–310

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Jiang Y, Toita R, Oishi J, Kawamura K, Han A, Mori T, Niidome T, Ishida M, Tatematsu K, Tanizawa K, Katayama Y (2007) Phosphorylation of Rho-associated kinase (Rho-kinase/ROCK/ROK) substrates by protein kinases A and C. Biochimie 89:39–47

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Asai D, Yamada S, Riki T, Oishi J, Mori T, Niidome T, Katayama Y (2008) A short peptide is a protein kinase C (PKC)α-specific substrate. Proteomics 10:2006–2011

    Article  CAS  Google Scholar 

  • Kang JH, Asai D, Tsuchiya A, Mori T, Niidome T, Katayama Y (2011) Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2). PLoS One 6:e22699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Toita R, Kim CW, Katayama Y (2012) Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 30:1662–1672

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Asai D, Toita R, Kawano T, Murata M (2015) Monitoring of phosphorylated peptides by radioactive assay and matrix-assisted laser desorption–ionization time-of-flight mass spectrometry. Amino Acids 47:2377–2383

    Article  CAS  PubMed  Google Scholar 

  • Ohguro H, Johnson RS, Ericsson LH, Walsh KA, Palczewski K (1994) Control of rhodopsin multiple phosphorylation. Biochemistry 33:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Onorato JJ, Palczewski K, Regan JW, Caron MG, Lefkowitz RJ, Benovic JL (1991) Role of acidic amino acids in peptide substrates of the beta-adrenergic receptor kinase and rhodopsin kinase. Biochemistry 30:5118–5125

    Article  CAS  PubMed  Google Scholar 

  • Penela P, Murga C, Ribas C, Lafarga V, Mayor F Jr (2010) The complex G protein-coupled receptor kinase 2 (GRK2) interractome unveils new physiopathological targets. Br J Pharmacol 160:821–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peregrin S, Jurado-Pueyo M, Campos PM, Sanz-Moreno V, Ruiz-Gómez A, Crespo P, Mayor F Jr, Murga C (2006) Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr Biol 16:2042–2047

    Article  CAS  PubMed  Google Scholar 

  • Pronin AN, Morris AJ, Surguchov A, Benovie JL (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275:26515–26522

    Article  CAS  PubMed  Google Scholar 

  • Reiter E, Lefkowitz RJ (2006) GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17:159–165

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Gómez A, Humrich J, Murga C, Quitterer U, Lohse MJ, Mayor F Jr (2000) Phosphorylation of phosducin and phosducin-like protein by G protein-coupled receptor kinase 2. J Biol Chem 275:29724–29730

    Article  PubMed  Google Scholar 

  • Ruiz-Gómez A, Mellström B, Tornero D, Morato E, Savignac M, Holguín H, Aurrekoetxea K, González P, González-García C, Ceña V, Mayor F Jr, Naranjo JR (2007) G protein-coupled receptor kinase 2-mediated phosphorylation of downstream regulatory element antagonist modulator regulates membrane trafficking of Kv4.2 potassium channel. J Biol Chem 282:1205–1215

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Perez A, Kumar S, Cook DI (2007) GRK2 interacts with and phosphorylates Nedd4 and Nedd4-2. Biochem Biophys Res Commun 359:611–615

    Article  CAS  PubMed  Google Scholar 

  • Wan KF, Sambi BS, Frame M, Tate R, Pyne NJ (2001) The inhibitory γ subunit of the type 6 retinal cyclic guanosine monophosphate phosphodiesterase is a novel intermediate regulating p42/p44 mitogen-activated protein kinase signaling in human embryonic kidney 293 cells. J Biol Chem 276:37802–37808

    CAS  PubMed  Google Scholar 

  • Woodall MC, Ciccarelli M, Woodall BP, Koch WJ (2014) G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Cir Res 114:1661–1670

    Article  CAS  Google Scholar 

  • Yoshida N, Haga K, Haga T (2003) Identification of sites of phosphorylation by G-protein-coupled receptor kinase 2 in β-tubulin. Eur J Biochem 270:1154–1163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Sigemi Terakubo and Ms. Niño Okamura (St. Marianna University School of Medicine) for technical assistance. This work was supported by a Grant-in-Aid for Challenging Exploratory Research (KAKENHI Grant Number 15K12531) and for Scientific Research (C) (15K01319) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Asai or Jeong-Hun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling editor: T. Harkany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asai, D., Murata, M., Toita, R. et al. Role of amino acid residues surrounding the phosphorylation site in peptide substrates of G protein-coupled receptor kinase 2 (GRK2). Amino Acids 48, 2875–2880 (2016). https://doi.org/10.1007/s00726-016-2345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2345-6

Keywords

Navigation