Skip to main content
Log in

Homocysteinemia control by cysteine in cerebral vascular patients after methionine loading test: evidences in physiological and pathological conditions in cerebro-vascular and multiple sclerosis patients

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The toxicity risk of hyperhomocysteinemia is prevented through thiol drug administration which reduces plasma total homocysteine (tHcy) concentrations by activating thiol exchange reactions. Assuming that cysteine (Cys) is a homocysteinemia regulator, the hypothesis was verified in healthy and pathological individuals after the methionine loading test (MLT). The plasma variations of redox species of Cys, Hcy, cysteinylglycine, glutathione and albumin (reduced, HS-ALB, and at mixed disulfide, XSS-ALB) were compared in patients with cerebral small vessels disease (CSVD) (n = 11), multiple sclerosis (MS) (n = 12) and healthy controls (n = 11) at 2-4-6 h after MLT. In MLT-treated subjects, the activation of thiol exchange reactions provoked significant changes over time in redox species concentrations of Cys, Hcy, and albumin. Significant differences between controls and pathological groups were also observed. In non-methionine-treated subjects, total Cys concentrations, tHcy and thiol-protein mixed disulfides (CSS-ALB, HSS-ALB) of CSVD patients were higher than controls. After MLT, all groups displayed significant cystine (CSSC) increases and CSS-ALB decreases, that in pathological groups were significantly higher than controls. These data would confirm the Cys regulatory role on the homocysteinemia; they also explain that the Cys-Hcy mixed disulfide excretion is an important point of hyperhomocysteinemia control. Moreover, in all groups after MLT, significant increases in albumin concentrations, named total albumin (tALB) and measured as sum of HS-ALB (spectrophometric), and XSS-ALB (assayed at HPLC) were observed. tALB increases, more pronounced in healthy than in the pathological subjects, could indicate alterations of albumin equilibria between plasma and other extracellular spaces, whose toxicological consequences deserve further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cys:

Cysteine

CysGly:

Cysteinylglycine

Hcy:

Homocysteine

CSH:

Reduced Cys

CSSC:

Cystine

CSS-ALB:

Cysteine-albumin mixed disulfide

CGSH:

Reduced CysGly

CGSS-ALB:

Cysteinylglycine-albumin mixed disulfide

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

CSSH:

Cysteine-homocysteine mixed disulfide

HSH:

Reduced Hcy

HSSH:

Homocystine

HSS-ALB:

Homocysteine-albumin mixed disulfide

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

GSS-ALB:

Glutathione-albumin mixed disulfide

HS-ALB:

Reduced albumin

MLT:

Methionine loading test

MS:

Multiple sclerosis

MSH:

Mesna

MSSM:

Dimesna

NPSH:

Non-protein thiols

PSH:

Protein SH groups

TSH:

Total plasma thiols, sum of PSH and XSH

XSS-ALB:

Thiol-albumin mixed disulfides

tCys, tHcy:

Total concentration of redox species expressed as reduced equivalents, namely XSSX = 2XSH

CSVD:

Cerebral small vessels disease

XSH:

Reduced thiols

XSSX:

Disulfides

XSSR:

Mixed disulfides of low molecular weight

References

  • Andersson A, Hultberg B, Lindgren A (2000) Redox status of plasma homocysteine and other plasma thiols in stroke patients. Atherosclerosis 151:535–539

    Article  CAS  PubMed  Google Scholar 

  • Ansari R, Mahta A, Mallack E, Luo JJ (2014) Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 10:281–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Besler HT, Comoğlu S (2003) Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine levels in patients with multiple sclerosis. Nutr Neurosci 6:189–196

    Article  CAS  PubMed  Google Scholar 

  • Boven E, Verschraagen M, Hulscher TM, Erkelens CA, Hausheer FH, Pinedo HM, van der Vijgh WJ (2002) BNP7787, a novel protector against platinum-related toxicities, does not affect the efficacy of cisplatin or carboplatin in human tumour xenografts. Eur J Cancer 38:1148–1156

    Article  CAS  PubMed  Google Scholar 

  • Carballal S, Radi R, Kirk MC, Barnes S, Freeman BA, Alvarez B (2003) Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 42:9906–9914

    Article  CAS  PubMed  Google Scholar 

  • Christodoulou J, Sadler PJ, Tucker A (1994) A new structural transition of serum albumin dependent on the state of Cys34. Detection by 1H-NMR spectroscopy. Eur J Biochem 225:363–368

    Article  CAS  PubMed  Google Scholar 

  • Cutler MJ, Urquhart BL, Freeman DJ, Spence JD, House AA (2009) Mesna for the treatment of hyperhomocysteinemia in hemodialysis patients. Blood Purif 27:306–310

    Article  PubMed  Google Scholar 

  • De Chiara B, Sedda V, Parolini M, Campolo J, De Maria R, Caruso R, Pizzi G, Disoteo O, CinziaDellanoce C, Corno AR, Cighetti G, Parodi O (2012) Plasma total cysteine and cardiovascular risk burden: action and interaction. ScientificWorldJournal 2012:303654

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Giuseppe D, Di Simplicio P, Capecchi PL, Lazzerini PE, Laghi Pasini F (2003) Alteration in the redox state of plasma of heart transplanted patients with moderate hyperhomocysteinemia. J Lab Clin Med 142:21–28

    Article  PubMed  Google Scholar 

  • Di Giuseppe D, Frosali S, Priora R, Di Simplicio F, Buonocore G, Cellesi C, Capecchi PL, Pasini FL, Lazzerini PE, Jakubowski H, Di Simplicio P (2004) The effects of age and hyperhomocysteinemia on the redox forms of plasma thiols. J Lab Clin Med 144:235–245

    Article  PubMed  Google Scholar 

  • Di Giuseppe D, Ulivelli M, Bartalini S, Battistini S, Cerase A, Passero S, Summa D, Frosali S, Priora R, Margaritis A, Di Simplicio P (2010) Regulation of redox forms of plasma thiols by albumin in multiple sclerosis after fasting and methionine loading test. Amino Acids 38:1461–1471

    Article  CAS  PubMed  Google Scholar 

  • Di Giuseppe D, Priora R, Coppo L, Ulivelli M, Bartalini S, Summa D, Margaritis A, Frosali S, Di Simplicio P (2014) The control of hyperhomocysteinemia through thiol exchange mechanisms by mesna. Amino Acids 46:429–439

    Article  PubMed  Google Scholar 

  • Doshi S, McDowell I, Goodfellow J, Stabler S, Boger R, Allen R, Newcombe R, Lewis M, Moat S (2005) Relationship between S-adenosylmethionine, S-adenosylhomocysteine, asymmetric dimethylarginine, and endothelial function in healthy human subjects during experimental hyper- and hypo-homocysteinemia. Metabolism 54:351–360

    Article  CAS  PubMed  Google Scholar 

  • Eikelboom JW, Lonn E, Genest JJ, Hankey G, Hysuf S (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 131:363–375

    Article  CAS  PubMed  Google Scholar 

  • El-Khairy L, Ueland PM, Nygard O, Refsum H, Vollset SE (1999) Lifestyle and cardiovascular disease risk factors as determinants of total cysteine in plasma: the Hordland homocysteine study. Am J Clin Nutr 70:1016–1024

    CAS  PubMed  Google Scholar 

  • El-Khairy L, Ueland PM, Refsum H, Graham IM, Vollset SE (2001) Plasma total cysteine as a risk factor for vascular disease: the European concerted action project. Circulation 103:2544–2549

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Friedman AN, Bostom AG, Laliberty P, Selhub J, Shemin D (2003) The effect of N-acetylcysteine on plasma total homocysteine levels in hemodialysis: a randomized, controlled study. Am J Kidney Dis 41:442–446

    Article  CAS  PubMed  Google Scholar 

  • Graham IM, Daly LE, Refsum HM, Robinson K, Brattstrom LE, Ueland PM, Palma-Reis RJ, Boers GH, Sheahan RG, Israelsson B, Uiterwaal CS, MeleadyR McMaster D, Verhoef P, Witteman J, Rubba P, Bellet H, Wautrecht JC, deValk HW, Sales Luis AC, Parrot-Rouland FM, Tan KS, Higgins I, Garcon D, Andria G et al (1997) Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 277:1775–1781

    Article  CAS  PubMed  Google Scholar 

  • Gryzunov YA, Arroyo A, Vigne JL, Zhao Q, Tyurin VA, Hubel CA, Gandley RE, Vladimirov YA, Taylor RN, Kagan VE (2003) Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants. Arch Biochem Biophys 413:53–66

    Article  CAS  PubMed  Google Scholar 

  • Guba SC, Fink LM, Fonseca V (1996) Hyperhomocysteinemia. An emerging and important risk factor for thromboembolic and cardiovascular disease. Am J Clin Pathol 105:709–722

    Article  Google Scholar 

  • Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354:407–413

    Article  CAS  PubMed  Google Scholar 

  • Hortin GL, Seam N, Hoehn GT (2006) Bound homocysteine, cysteine, and cysteinylglycine distribution between albumin and globulin. Clin Chem 52:2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Kurowski V, Wagner T (1997) Urinary excretion of ifosfamide, 4-hydroxyifosfamide, 3- and 2-dechloroethylifosfamide, mesna, and dimesna in patients on fractionated intravenous ifosfamide and concomitant mesna therapy. Cancer Chemother Pharmacol 39:431–439

    Article  CAS  PubMed  Google Scholar 

  • Lewis SD, Misra DC, Shafer JA (1980) Determination of interactive thiol utilization in bovine serum albumin, glutathione, and other thiols by potentiometric difference titration. Biochemistry 19:6129–6137

    Article  CAS  PubMed  Google Scholar 

  • Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229

    Article  CAS  PubMed  Google Scholar 

  • Mansoor MA, Bergmark C, Svardal AM, Lonning PE, Ueland PM (1995) Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease. Arterioscler Thromb Vasc Biol 15:232–240

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  • Pedersen AO, Jacobsen J (1980) Reactivity of the thiol group in human and bovine albumin at pH 3–9, as measured by exchange with 2,2′-dithiodipyridine. Eur J Biochem 106:291–295

    Article  CAS  PubMed  Google Scholar 

  • Perła-Kaján J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  PubMed  Google Scholar 

  • Priora R, Coppo L, Margaritis A, Di Giuseppe D, Frosali S, Summa D, Heo J, Di Simplicio P (2010) The control of S-thiolation by cysteine via gamma-glutamyltranspeptidase and thiol exchanges in erythrocytes and plasma of diamide-treated rats. Toxicol Appl Pharmacol 242:333–343

    Article  CAS  PubMed  Google Scholar 

  • Quere I, Gris JC, Dauzat M (2005) Homocysteine and venous thrombosis. Sem Vasc Med 5:183–189

    Article  Google Scholar 

  • Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Ramsaransing GSM, Fokkema MR, Teelken A, Arutjunyan AV, Koch M, De Keyser J (2006) Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry 77:189–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholze A, Rinder C, Beige J, Riezler R, Zidek W, Tepel M (2004) Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stages renal failure. Circulation 109:369–374

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Whebe C, Majors AK, Ketterer ME, Di Bello PM, Jacobsen DW (2001) Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine mixed disulfide, and cystine in circulation. J Biol Chem 276:46896–46904

    Article  CAS  PubMed  Google Scholar 

  • Suliman ME, Barany P, Kalantar-Zadeh K, Lindholm B, Stenvinkel P (2005) Homocysteinemia in uremia—a puzzling and conflicting story. Nephrol Dial Transplant 20:16–21

    Article  PubMed  Google Scholar 

  • Summa D, Spiga O, Bernini A, Venditti V, Priora R, Frosali S, Margaritis A, Di Giuseppe D, Niccolai N, Di Simplicio P (2007) Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model. Proteins 69:369–378

    Article  CAS  PubMed  Google Scholar 

  • Urquhart BL, House AA, Cutler MJ, Spence JD, Freeman DJ (2006) Thiol exchange: an in vitro assay that predicts the efficacy of novel homocysteine lowering therapies. J Pharm Sci 95(8):1742–1750

    Article  CAS  PubMed  Google Scholar 

  • Urquhart BL, Freeman DJ, Spence JD, House AA (2007) The effect of mesna on plasma total homocysteine concentration in hemodialysis patients. Am J Kidney Dis 49(1):109–117

    Article  CAS  PubMed  Google Scholar 

  • Ventura P, Panini R, Pasini MC, Scarpetta G, Salvioli G (1999) N-Acetyl-cysteine reduces homocysteine plasma levels after single intravenous administration by increasing thiols urinary excretion. Pharmacol Res 40:345–350

    Article  CAS  PubMed  Google Scholar 

  • Vrethem M, Mattsson E, Hebelka H, Leerbeck K, Osterberg A, Landtblom AM, Balla B, Nilsson H, Hultgren M, Brattström L, Kågedal B (2003) Increased plasma homocysteine levels without signs of vitamin B12 deficiency in patients with multiple sclerosis assessed by blood and cerebrospinal fluid homocysteine and methylmalonic acid. Mult Scler 9:239–245

    Article  CAS  PubMed  Google Scholar 

  • Wu LL, Wu JT (2002) Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 322:21–28

    Article  CAS  PubMed  Google Scholar 

  • Zacho J, Yazdanyar S, Stig E, Bojesen SE, Tybjærg-Hansen A, Børge G, Nordestgaard BG (2011) Hyperhomocysteinemia, methylenetetrahydrofolate reductase c.677C > T polymorphism and risk of cancer: cross-sectional and prospective studies and meta-analyses of 75,000 cases and 93,000 controls. Int J Cancer 128:644–652

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Simplicio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

The Authors have given their consent to be included in the present study.

Additional information

Handling Editor: H. Jakubowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulivelli, M., Priora, R., Di Giuseppe, D. et al. Homocysteinemia control by cysteine in cerebral vascular patients after methionine loading test: evidences in physiological and pathological conditions in cerebro-vascular and multiple sclerosis patients. Amino Acids 48, 1477–1489 (2016). https://doi.org/10.1007/s00726-016-2207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2207-2

Keywords

Navigation