Skip to main content
Log in

High-performance liquid chromatographic separation of unusual β3-amino acid enantiomers in different chromatographic modes on Cinchona alkaloid-based zwitterionic chiral stationary phases

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polar-ionic and hydro-organic mobile phase mode of high-performance liquid chromatographic separations of 23 sterically constrained primary β3-amino acid enantiomers containing, alkyl, aryl or heteroaryl side-chains were carried out by using newly developed Cinchona alkaloid-based zwitterionic chiral selectors and the stationary phases Chiralpak ZWIX(+)™ and ZWIX(−)™. In the polar-ionic mode, the effects of the composition of the bulk solvent and the natures of the co- and counter-ions, while in the hydro-organic mode, the effects of the pH, the counter-ion concentration and the structures of the analytes were investigated. The separations of the enantiomers of these 23 primary β3-amino acids, which can be classified as a series of quasi- (pseudo-) homologs, were optimized in both chromatographic modes. The elution sequence was determined in most cases and a reversal of elution order on ZWIX(+)™ and ZWIX(−)™ column was observed. On the basis of this intermolecular recognition model between the selectors and the given enantiomers an indirect assignment of the resolved enantiomer via chromatography is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adlof R, List G (2004) Analysis of triglyceride isomers by silver-ion high-performance liquid chromatography: effect of column temperature on retention time. J Chromatogr A 46:109–113

    Article  Google Scholar 

  • Bandala Y, Juaristi E (2009) Recent developments in the synthesis of β-amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry. origins and synthesis of amino acids, vol 1. Wiley-VCH, Weinheim, pp 291–365

    Google Scholar 

  • Berkecz R, Ilisz I, Benedek G, Fülöp F, Armstrong DW, Péter A (2009) High-performance liquid chromatographic enantioseparation of 2-aminomono- and dihydroxycyclopentanecarboxylic and 2-aminodihydroxycyclohexanecarboxylic acids on macrocyclic glycopeptide-based phases. J Chromatogr A 1216:927–932

    Article  CAS  PubMed  Google Scholar 

  • Castells CB, Carr RW (2000) A study of the thermodynamics and influence of temperature on chiral high-performance liquid chromatographic separations using cellulosetris (3,5-dimethylphenylcarbamate) coated zirconia stationary phases. Chromatographia 52:535–542

    Article  CAS  Google Scholar 

  • Chester TL, Coym JW (2003) Effect of phase ratio on van’t Hoff analysis in reversed-phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy. J Chromatogr A 1003:101–111

    Article  CAS  PubMed  Google Scholar 

  • Cross LC, Klyne W (1976) IUPAC Nomenclature of organic chemistry, section F, stereochemistry. Pure Appl Chem 45:11–30

    Google Scholar 

  • D’Aquarica I, Gasparrini F, Misiti D, Zappia G, Cimarelli C, Palmieri G, Carotti A, Cellamare S, Villani C (2000) Application of a new chiral stationary phase containing the glycopeptide antibiotic A-40,926 in the direct chromatographic resolution of β-amino acids. Tetrahedron Asymmetry 11:2375–2385

    Article  Google Scholar 

  • Fornstedt T, Sajonz P, Guichon G (1998) A closer study of chiral retention mechanisms. Chirality 10:375–381

    Article  CAS  Google Scholar 

  • Fülöp F, Martinek TA (2012) Peptidic foldamers: ramping up diversity. Chem Soc Rev 41:687–702

    Article  PubMed  Google Scholar 

  • Furukawa M, Okawara T, Terawaki Y (1977) Asymmetric syntheses of β-amino acids by the addition of chiral amines to C=C double bonds. Chem Pharm Bull 25:1319–1325

    Article  CAS  Google Scholar 

  • Gecse Z, Ilisz I, Nonn M, Grecsó N, Fülöp F, Agneeswari R, Hyun MH, Péter A (2013) High-performance liquid chromatographic enantioseparation of isoxazoline-fused 2-aminocyclopentanecarboxylic acids on a chiral ligand-exchange stationary phase. J Sep Sci 36:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Gedey S, Liljeblad A, Lázár L, Fülöp F, Kanerva LT (2001) Preparation of highly enantiopure beta-amino esters by Candida antarctica lipase A. Tetrahedron Asymmetry 12:105–110

    Article  CAS  Google Scholar 

  • Götmar G, Fornstedt T, Guiochon G (2000) Retention mechanism of β-blockers on an immobilized cellulase. Relative importance of the hydrophobic and ionic contributions to their enantioselective and nonselective interactions. Anal Chem 72:3908–3915

    Article  PubMed  Google Scholar 

  • Hoffmann CV, Lämmerhofer M, Lindner W (2007) Novel strong cation-exchange type chiral stationary phase for the enantiomer separation of chiral amines by high-performance liquid chromatography. J Chromatogr A 1161:242–251

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann CV, Pell R, Lämmerhofer M, Lindner W (2008) Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. Anal Chem 80:8780–8789

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W (2009a) Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes. J Chromatogr A 1216:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann CV, Reischl R, Maier NM, Lämmerhofer M, Lindner W (2009b) Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases. J Chromatogr A 1216:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Hyun MH (2005) Development and application of crown ether-based HPLC chiral stationary phases. Bull Korean Chem Soc 26:1153–1163

    Article  CAS  Google Scholar 

  • Ilisz I, Berkecz R, Péter A (2008) Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: a review. J Pharm Biomed Anal 47:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ilisz I, Berkecz R, Péter A (2009) Retention mechanism of high-performance liquid chromatographic enantioseparation on macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 1216:1854–1860

    Google Scholar 

  • Ilisz I, Aranyi A, Pataj Z, Péter A (2012) Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: a review. J Pharm Biomed Anal 69:28–41

    Article  CAS  PubMed  Google Scholar 

  • Ilisz I, Grecsó N, Palkó M, Fülöp F, Lindner W, Péter A (2014a) Structural and temperature effects on enantiomer separations of bicyclo[2.2.2]octane-based 3-amino-2-carboxylic acids on cinchona alkaloid-based zwitterionic chiral stationary phases. J Pharm Biomed Anal 98:130–139

    Article  CAS  PubMed  Google Scholar 

  • Ilisz I, Pataj Z, Gecse Z, Szakonyi Z, Fülöp F, Lindner W, Péter A (2014b) Unusual temperature-induced retention behavior of constrained β-amino acid enantiomers on the zwitterionic chiral stationary phases ZWIX(+) and ZWIX(−). Chirality 26:385–393

    Article  CAS  PubMed  Google Scholar 

  • Ilisz I, Gecse Z, Pataj Z, Fülöp F, Tóth G, Lindner W, Péter A (2014c) Direct high-performance liquid chromatographic enantioseparation of secondary amino acids on Cinchona alkaloid-based chiral zwitterionic stationary phases. Unusual temperature behavior. J Chromatogr A. doi:10.1016/j.chroma.2014.06.087

    Google Scholar 

  • Juaristi E, Soloshonok VA (2005) Enantioselective synthesis of β-amino acids, 2nd edn. Wiley-VCH, New York

    Book  Google Scholar 

  • Kopaciewicz W, Rounds MA, Fausnaugh F, Regnier FE (1983) Retention model for high-performance ion-exchange chromatography. J Chromatogr A 266:3–21

    Article  CAS  Google Scholar 

  • Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856

    Article  PubMed  Google Scholar 

  • Lázár L, Martinek T, Bernáth G, Fülöp F (1998) A simple synthesis of β-alkyl-substituted β-amino acids. Synth Commun 28:219–224

    Article  Google Scholar 

  • Lindner W, Lämmerhofer M (1996) Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 741:33–48

    Article  Google Scholar 

  • Ma JS (2003) Unnatural amino acids in drug discovery. Chim Oggi Chem Today 21:61–68

    Google Scholar 

  • Matarashvili I, Chankvetadze L, Fanali S, Farkas T, Chankvetadze B (2013) HPLC separation of enantiomers of chiral arylpropionic acid derivatives using polysaccharide-based chiral columns and normal-phase eluents with emphasis on elution order. J Sep Sci 36:140–147

    Article  CAS  PubMed  Google Scholar 

  • Meyer AZ (1986) Molecular mechanics and molecular shape. Part 4. Shape and steric parameters. J Chem Soc Perkin Trans 2:1567–1986

    Article  Google Scholar 

  • Pataj Z, Ilisz I, Gecse Z, Szakonyi Z, Fülöp F, Lindner W, Péter A (2014a) Effect of mobile phase composition on the liquid chromatographic enantioseparation of bulky monoterpene-based β-amino acids by applying chiral stationary phases based on Cinchona alkaloid. J Sep Sci 37:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Pataj Z, Ilisz I, Grecsó N, Palkó M, Fülöp F, Armstrong DW, Péter A (2014b) Enantiomeric separation of bicyclo[2.2.2]octane-based 2-amino-3-carboxylic acids on macrocyclic glycopeptide chiral stationary phases. Chirality 26:200–208

    Article  CAS  PubMed  Google Scholar 

  • Pell R, Sic S, Lindner W (2012) Mechanistic investigations of cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A 1269:287–296

    Article  CAS  PubMed  Google Scholar 

  • Péter A (2002) Direct high-performance liquid-chromatographic enantioseparation of apolar β-amino acids on a quinine derived chiral anion exchanger stationary phase. J Chromatogr A 955:141–150

    Article  PubMed  Google Scholar 

  • Peyrin E, Guillaume YC, Guinchard C (1997) Interactions between dansyl amino acids and human serum albumin using high-performance liquid chromatography: mobile-phase pH and temperature considerations. Anal Chem 69:4979–4984

    Article  CAS  PubMed  Google Scholar 

  • Rodionov WM, Malivinskaia EF (1926) Zur darstellung von aryl-β-amino-fettsäuren Berichte 59:2952–2958

  • Sardella R, Ianni F, Lisanti A, Marinozzi M, Scorzoni S, Natalini B (2014a) The effect of mobile phase composition in the enentioseparation of pharmaceutically relevant compounds with polysaccharide-based stationary phases. Biomed Chromatogr 28:159–167

    Article  CAS  PubMed  Google Scholar 

  • Sardella R, Ianni F, Lisanti A, Scorzoni S, Marini F, Sternativo S, Natalini B (2014b) Direct chromatographic enantioresolution of fully constrained β-amino acids: exploring the use of high-molecular weight chiral selectors. Amino Acids 46:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Shih Y-E, Wang J-S, Chen C-T (1978) Studies on potential anti-tumor agents. 3. synthesis of 4-arylcyclophosphamides. Heterocycles 9:1277–1285

    Article  CAS  Google Scholar 

  • Sipos L, Ilisz I, Pataj Z, Szakonyi Z, Fülöp F, Armstrong DW, Péter A (2010) High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases. J Chromatogr A 1217:6956–6963

    Article  CAS  PubMed  Google Scholar 

  • Sipos L, Ilisz I, Aranyi A, Gecse Z, Nonn M, Fülöp F, Hyun MH, Péter A (2012a) High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phases. Chirality 24:817–824

    Article  CAS  PubMed  Google Scholar 

  • Sipos L, Ilisz I, Nonn M, Fülöp F, Pataj Z, Armstrong DW, Péter A (2012b) High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 1232:142–151

    Article  CAS  PubMed  Google Scholar 

  • Sleebs BE, Van Nguyen TT, Hughes AB (2009) Recent advances in stereoselective synthesis and application of β-amino acids. Org Prep Proc Int 41:429–478

    Article  CAS  Google Scholar 

  • Solymár M, Fülöp F, Kanerva LT (2002) Candida antarctica lipase A—a powerful catalyst for the resolution of heteroaromatic β-amino esters. Tetrahedron Asymmetry 13:2383–2388

    Article  Google Scholar 

  • Stahlberg J (1999) Retention models for ions in chromatography. J Chromatogr A 855:3–55

    Article  CAS  PubMed  Google Scholar 

  • Wernisch S, Lindner W (2012) Versatility of cinchona-based zwitterionic chiral stationary phases: enantiomer and diastereomer separations of non-protected ologopeptides utilizing a multi-modal chiral recognition mechanism. J Chromatogr A 1269:297–307

    Article  CAS  PubMed  Google Scholar 

  • Wernisch S, Pell R, Lindner W (2012) Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases. J Sep Sci 35:1560–1572

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Yehl PM, Gauthier D, Dovletoglu A (2004) Retention and thermodynamic studies of piperazine diastereomers in reversed-phase liquid chromatography. Chromatographia 59:189–195

    Article  CAS  Google Scholar 

  • Yogo K, Takemura C, Saito Y, Jinno K (2011) An abnormal temperature dependence of alkylpyrazines’ retention in reversed-phase liquid chromatography. Anal Sci 27:1257–1260

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Holder E, Franco P, Lindner W (2014a) Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography. J Chromatogr A 1363:191–199

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Holder E, Franco P, Lindner W (2014b) Zwittewrionic chiral stationary phases based on cinchona and sulfonic acids fort the direct stereoselectice separation of amino acids and other amphoteric compounds. J Sep Sci 37:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Zilkha A, Rivlin J (1958) Syntheses of DL-β-aminobutyric acid and its N-alkyl derivatives. J Org Chem 23:94–96

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Hungarian National Science Foundation grant OTKA K 108847. AP gratefully acknowledges the support of Pilar Franco (Chiral Technologies Europe) for the Chiralpak columns. RP, PZ and PB gratefully acknowledge the support of the Ministry of Education, Youth and Sports of the Czech Republic (NPU LO 1305), Operational Program “Education for Competitiveness” (CZ.1.07/2.3.00/30.0041), and Palacký University in Olomouc (IGA_PrF_2014031).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Péter.

Additional information

Handling Editor: D. Tsikas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilisz, I., Grecsó, N., Papoušek, R. et al. High-performance liquid chromatographic separation of unusual β3-amino acid enantiomers in different chromatographic modes on Cinchona alkaloid-based zwitterionic chiral stationary phases. Amino Acids 47, 2279–2291 (2015). https://doi.org/10.1007/s00726-015-2006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2006-1

Keywords

Navigation