Skip to main content
Log in

Safety of long-term dietary supplementation with l-arginine in pigs

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study was conducted with a swine model to determine the safety of long-term dietary supplementation with l-arginine–HCl or l-arginine free base. Beginning at 30 days of age, pigs were fed a corn- and soybean meal-based diet (31.5 g/kg body weight/day) supplemented with 0, 1.21, 1.81 or 2.42 % l-arginine–HCl (Experiment 1) or with 0, 1, 1.5 or 2 % l-arginine (Experiment 2). The supplemental doses of 0, 1, 1.5, and 2 % l-arginine provided pigs with 0, 315, 473, and 630 mg l-arginine/kg body weight/day, respectively, which were equivalent to 0, 286, 430, and 573 mg l-arginine/kg body weight/day, respectively, in humans. At 121 days of age (91 days after initiation of supplementation), blood samples were obtained from the jugular vein of pigs at 1 and 4 h after feeding for hematological and clinical chemistry tests. Dietary supplementation with l-arginine increased plasma concentrations of arginine, ornithine, proline, albumin and reticulocytes, while reducing plasma concentrations of ammonia, free fatty acids, triglyceride, cholesterol, and neutrophils. l-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Other variables in standard hematology and clinical chemistry tests, serum concentrations of insulin, growth hormone and insulin-like growth factor-I did not differ among all the groups of pigs. These results indicate that dietary supplementation with l-arginine (up to 630 mg/kg body weight/day) is safe in pigs for at least 91 days. Our findings help guide clinical studies to determine the safety of long-term oral administration of l-arginine to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Arg:

l-Arginine

HPLC:

High-performance liquid chromatography

NO:

Nitric oxide

References

  • Agostinelli E (2014) Polyamines and transglutaminases: biological, clinical, and biotechnological perspectives. Amino Acids 46:475–485

    Article  CAS  PubMed  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS-Word tables for one-way ANOVA. Springerplus 3:474

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbul A (1986) Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr 10:227–238

    Article  CAS  Google Scholar 

  • Beaumier L, Castillo L, Ajami AM, Young VR (1995) Urea cycle intermediate kinetics and nitrate excretion at normal and “therapeutic” intakes of arginine in humans. Am J Physiol Endocrinol Metab 269:E884–E896

    CAS  Google Scholar 

  • Boger RH, Bode-Boger SM (2001) The clinical pharmacology of l-arginine. Annu Rev Pharmacol Toxicol 41:79–99

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    Article  CAS  PubMed  Google Scholar 

  • Burrin DG, Ng K, Stoll B, Sáenz De Pipaón M (2014) Impact of new-generation lipid emulsions on cellular mechanisms of parenteral nutrition-associated liver disease. Adv Nutr 5:82–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR (1993) Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol Endocrinol Metab 265:E532–E539

    CAS  Google Scholar 

  • Chin-Dusting JP, Alexander CT, Arnold PJ, Hodgson WC, Lux AS, Jennings GL (1996) Effects of in vivo and in vitro l-arginine supplementation on healthy human vessels. J Cardiovasc Pharmacol 28:158–166

    Article  CAS  PubMed  Google Scholar 

  • Clarkson P, Adams MR, Powe AJ, Donald AE, McCredie R, Robinson J, McCarthy SN, Keech A, Celermajer DS, Deanfiled JE (1996) Oral l-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 97:1989–1994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Closs EI, Simon A, Vékony N, Rotmann A (2004) Plasma membrane transporters for arginine. J Nutr 134:2752S–2759S

    CAS  PubMed  Google Scholar 

  • Colgan M (1993) Optimum sports nutrition: your competitive edge. Advanced Research Press, Ronkonkoma

    Google Scholar 

  • Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP (1992) l-Arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 90:1248–1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cynober L (2007) Pharmacokinetics of arginine and related amino acids. J Nutr 137:1646S–1649S

    CAS  PubMed  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y, Wang JJ, Satterfield MC, Meininger CJ, Bazer FW, Wu G (2013) Nitric oxide and energy metabolism in mammals. BioFactors 39:383–391

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Jia SC, Wu G (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • Evans RW, Fernstrom JD, Thompson J, Morris SM, Kuller LH (2004) Biochemical responses of healthy subjects during dietary supplementation with l-arginine. J Nutr Biochem 15:534–539

    Article  CAS  PubMed  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization/World Health Organization (FAO/WHO) (2006) A model for establishing upper levels of intake for nutrients and related substances. Technical Workshop on Nutrient Risk Assessment, Geneva

    Google Scholar 

  • Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), US Department of Health and Human Services (2005) Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Bethesda

  • Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    CAS  PubMed  Google Scholar 

  • Gornik HL, Creager MA (2004) Arginine and endothelial and vascular health. J Nutr 134:2880S–2887S

    CAS  PubMed  Google Scholar 

  • Grasemann H, Grasemann C, Kurtz F, Tietze-Schillings G, Vester U, Ratjen F (2005) Oral l-arginine supplementation in cystic fibrosis patients: a placebo-controlled study. Eur Respir J 25:62–68

    Article  CAS  PubMed  Google Scholar 

  • Grimble GK (2007) Advanced gastrointestinal effects of arginine and related amino acids. J Nutr 137:1693S–1701S

    CAS  PubMed  Google Scholar 

  • Hayashi Y (2003) Application of the concept of risk assessment to the study of amino acid supplements. J Nutr 133:2021S–2024S

    CAS  PubMed  Google Scholar 

  • Hoang HH, Padgham SV, Meininger CJ (2013) l-Arginine, tetrahydrobiopterin, nitric oxide and diabetes. Curr Opin Clin Nutr Metab Care 16:76–82

    Article  CAS  PubMed  Google Scholar 

  • Hurt RT, Ebbert JO, Schroeder DR, Croghan IT, Bauer BA, McClave SA, Miles JM, McClain CJ (2014) l-Arginine for the treatment of centrally obese subjects: a pilot study. J Diet Suppl 11:40–52

    Article  CAS  PubMed  Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC, Li P, Lee M-J, Smith SB, Spencer T, Fried SK, Wu G (2009) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    CAS  PubMed  Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Bazer FW, Johnson GA, Burghardt RC, Frank JW, Dai ZL, Wang JJ, Wu ZL, Shinzato I, Wu G (2014) Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375–384

    Article  CAS  PubMed  Google Scholar 

  • Lucotti P, Setola E, Monti LD, Galluccio E, Costa S, Sandoli EP, Fermo I, Rabaiotti G, Gatti R, Piatti P (2006) Beneficial effect of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 291:E906–E912

    Article  CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Moon HK, Carroll JA, Kim SW (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835

    Article  CAS  PubMed  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  CAS  PubMed  Google Scholar 

  • McNeal C, Wu G, Vasquez S, Wilson DP, Satterfield MC, McKnight JR, Malbari H (2010) The role of arginine for treating obese youth. In: Bagchi D (ed) Global perspectives on childhood obesity. Elsevier, New York, pp 433–442

    Google Scholar 

  • Meijer AJ, Lof C, Ramos IC, Verhoeven AJ (1985) Control of ureogenesis. Eur J Biochem 148:189–196

    Article  CAS  PubMed  Google Scholar 

  • Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137:1602S–1609S

    CAS  PubMed  Google Scholar 

  • Paddon-Jones D, Borsheim E, Wolfe RR (2004) Potential ergogenic effects of arginine and creatine supplementation. J Nutr 134:2888S–2894S

    CAS  PubMed  Google Scholar 

  • Phang JM, Liu W (2012) Proline metabolism and cancer. Front Biosci (Landmark Ed) 17:1835–1845

    Article  CAS  Google Scholar 

  • Pond WG, Mersmann HJ (2001) Biology of the domestic pig. Cornell University Press, Ithaca

    Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, Ernst KV, Kelemen MD, Townsend SN, Capriotti A, Hare JM, Gernstenblith G (2006) l-Arginine therapy in acute myocardial infarction: the vascular interaction with age in myocardial infarction (VINTAGE) randomized clinical trial. JAMA 295:58–64

    Article  CAS  PubMed  Google Scholar 

  • Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol 50:376–399

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Davis TA (2014) Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. J Anim Sci Biotechnol 5(1):8

    Article  PubMed Central  PubMed  Google Scholar 

  • Tan BE, Yin YL, Kong XF, Li P, Li XL, Gao HJ, Li XG, Huang RL, Wu G (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan BE, Li XG, Yin YL, Wu ZL, Liu C, Tekwe CD, Wu G (2012) Regulatory roles for l-arginine in reducing white adipose tissue. Front Biosci 17:2237–2246

    Article  Google Scholar 

  • Tanghao O, Chalon S, Moreno H Jr, Hoffman BB, Blaschke TF (1999) Pharmacokinetics of l-arginine during chronic administration to patients with hypercholesterolaemia. Clin Sci (Lond) 96:199–207

    Article  Google Scholar 

  • Tsubuku S, Hatayama K, Mawatari K, Smriga M, Kimura T (2004) Thirteen-week oral toxicity study of l-arginine in rats. Int J Toxicol 23:101–105

    Article  CAS  PubMed  Google Scholar 

  • Visek WJ (1986) Arginine needs, physiological states and usual diets. A reevaluation. J Nutr 116:36–46

    CAS  PubMed  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK, Wu G (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G (1995) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction and health. Adv Nutr 1:31–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol 269:R621–R629

    CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629

    CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. BioFactors 35:21–27

    Article  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Borbolla AG, Knabe DA (1994) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444

    CAS  PubMed  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    CAS  PubMed  Google Scholar 

  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    CAS  PubMed  Google Scholar 

  • Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Jobgen WS, Kim SW, Lassala A, Li P, Matis JH, Meininger CJ, Spencer TE (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    CAS  PubMed  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ (2007b) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu ZL, Satterfield MC, Bazer FW, Wu G (2012) Regulation of brown adipose tissue development and white fat reduction by l-arginine. Curr Opin Clin Nutr Metab Care 15:529–538

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li XL, Wang XQ, Johnson GA, Burghardt RC, Dai ZL, Wang JJ, Wu ZL (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai ZL, Li DF, Wang JJ, Wu ZL (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Yin YL, Chu WY, Liu ZQ, Deng D, Li TJ, Huang RL, Zhang JS, Tan BE, Wang W, Wu G (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the International Council of Amino Acid Science (Brussels, Belgium). We thank our graduate students and technicians as well as staff at Texas A&M Veterinary Medical Diagnostic Laboratory for assistance in this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Li, X., Rezaei, R. et al. Safety of long-term dietary supplementation with l-arginine in pigs. Amino Acids 47, 925–936 (2015). https://doi.org/10.1007/s00726-015-1921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1921-5

Keywords

Navigation