Skip to main content
Log in

Disturbance of Arabidopsis thaliana microRNA-regulated pathways by Xcc bacterial effector proteins

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Plants are continuously subjected to infection by pathogens, including bacteria and viruses. Bacteria can inject a variety of effector proteins into the host to reprogram host defense mechanism. It is known that microRNAs participate in plant disease resistance to bacterial pathogens and previous studies have suggested that some bacterial effectors have evolved to disturb the host’s microRNA-regulated pathways; and so enabling infection. In this study, the inter-species interaction between an Xanthomonas campestris pv campestris (Xcc) pathogen effector and Arabidopsis thaliana microRNA transcription promoter was investigated using three methods: (1) interolog, (2) alignment based on using transcription factor binding site profile matrix, and (3) the web-based binding site prediction tool, PATSER. Furthermore, we integrated another two data sets from our previous study into the present web-based system. These are (1) microRNA target genes and their downstream effects mediated by protein–protein interaction (PPI), and (2) the XccArabidopsis PPI information. This present work is probably the first comprehensive study of constructing pathways that comprises effector, microRNA, target genes and PPI for the study of pathogen–host interactions. It is expected that this study may help to elucidate the role of pathogen–host interplay in a plant’s immune system. The database is freely accessible at: http://ppi.bioinfo.asia.edu.tw/EDMRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babitha MP, Bhat SG, Prakash HS, Shetty HS (2002) Differential induction of superoxide dismutase in downy mildew resistant and susceptible genotypes of pearly millet. Plant Pathol 51(4):480–486

    Article  CAS  Google Scholar 

  • Banjerdkit P, Vattanaviboon P, Mongkolsuk S (2005) Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas camertis. Appl Environ Microbiol 71(4):1843–1849

    Article  CAS  Google Scholar 

  • Block A, Li G, Fu ZQ, Alfano JR (2008) Phytopathogen type III effector weaponry and their plant targets. Curr Opin Plant Biol 11(4):396–403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Buell CR (2002) Interactions between Xanthomonas species and Arabidopsis thaliana. Arabidopsis Book 1:e0031

    Article  PubMed Central  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    Article  PubMed  CAS  Google Scholar 

  • Claverie J-M, Notredame C (2006) Bioinformatics for dummies, 2nd edn. Wiley Publishing, New York

  • Cunnac S, Lindeberg M, Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12(1):53–60

    Article  PubMed  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Dalmay T, Horsefield R, Braunstein TH, Baulcombe DC (2001) SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J 20(8):2069–2078

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J (2012) PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13(1):299

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fones H et al (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathog 6(9):e1001093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Franza T, Mahe B, Expert D (2005) Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achrophore achromobactin for extracellular growth and plant infection. Mol Microbiol 55:261–275

    Article  PubMed  CAS  Google Scholar 

  • Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444(7119):567–573

    Article  PubMed  CAS  Google Scholar 

  • Gohre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  CAS  Google Scholar 

  • Jehl MA, Arnold R and Rattei T (2011) Effective-a database of predicted secreted bacterial proteins. Nucleic Acids Res 39 (Database issue):D591–D595

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Kurubanjerdjit N, Lee Y, Tsai JJP, Ng K-L (2012) Prediction of microRNA-regulated A. thaliana-Xcc protein interaction pathways. In: Yinghtawornsuk T and Sandhu PS (ed) International Conference Proceedings of PSRC, International Conference on Agricultural, Environment and Biological Sciences, May 26–27, 2012, Phuket

  • Li Y et al (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152(4):2222–2231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li ZG, He F, Zhang Z, Peng YL (2011) Prediction of protein–protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids 42(6):2363–2371

    Article  PubMed  CAS  Google Scholar 

  • Mandoli DF, Olmstead R (2000) The importance of emerging model systems in plant biology. J Plant Growth Regul 19:249–252

    Article  CAS  Google Scholar 

  • Morel JB et al (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14(3):629–639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morgan TD, Baker P, Kramer KJ, Basibuyuk HH, Quicke DLJ (2002) Metals in mandibles of stored product insects: do zinc and manganese enhance the ability of larvae to infest seeds? J Stored Prod Res 39:65–75

    Article  Google Scholar 

  • Mourrain P et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101(5):533–542

    Article  PubMed  CAS  Google Scholar 

  • Navarro L et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321(5891):964–967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Norambuena T, Melo F (2010) The protein-DNA interface database. BMC Bioinform 11:262

    Article  CAS  Google Scholar 

  • Oh CS, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253(2):185–192

    Article  PubMed  CAS  Google Scholar 

  • Poueymiro M, Genin S (2009) Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr Opin Microbiol 12(1):44–52

    Article  PubMed  CAS  Google Scholar 

  • Rhee SY et al (2003) The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31(1):224–228

    Article  PubMed  CAS  Google Scholar 

  • Rolke Y et al (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD 1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27

    Article  PubMed  CAS  Google Scholar 

  • Sanseverino W et al (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 38 (Database issue):D814–D821

    Google Scholar 

  • Speth EB, Lee YN, He SY (2007) Pathogen virulence factors as molecular probes of basic plant cellular functions. Curr Opin Plant Biol 10(6):580–586

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stahl EA, Bishop JG (2000) Plant-pathogen arms races at the molecular level. Curr Opin Plant Biol 3(4):299–304

    Article  PubMed  CAS  Google Scholar 

  • Tang DJ et al (2005) The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv campestris. Mol Plant Microbe Interact 18:652–658

    Article  PubMed  CAS  Google Scholar 

  • Tsuji J, Somerville SC (1988) Xanthomonas campestris pv. campestris-induced chlorosis in Arabidopsis thaliana. Arabidopsis Inf Serv 26:1–8

    Google Scholar 

  • Tsuji J, Somerville SC (1992) First report of the natural infection of Arabidopsis thaliana by Xanthomonas campestris pv. campestris. Plant Dis 76(5):539

    Article  Google Scholar 

  • Tsuji J, Somerville SC, Hammerschmidt R (1991) Identification of a gene in Arabidopsis thaliana that controls resistance to Xanthomonas campestris pv. campestris. Physiol Mol Plant Pathol 38:57–65

    Article  Google Scholar 

  • Tucker SL et al (2004) A fungal metallothionein is required for pathogenicity of Mangaporthe grisea. Plant Cell 16:1575–1588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu H et al (2004) Annotation transfer between genomes: protein–protein interologs and protein-DNA regulogs. Genome Res 14(6):1107–1118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou JM, Chai J (2008) Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11(2):179–185

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z et al (2010) PMRD: plant microRNA database. Nucleic Acids Res 38 (Database issue):D806–D813

    Google Scholar 

Download references

Acknowledgments

The work of Ka-Lok Ng and Nilubon Kurubanjerdjit is supported by the National Science Council of Taiwan, under the grants of NSC 100-2221-E-468-013, and NSC 101-2221-E-468 -027. The work of Ka-Lok Ng and Jeffrey J.P. Tsai is supported by the grants of NSC 99-2632-E-468-001-MY3. The work of Chien-Hung Huang is supported by the grants of NSC 101-2221-E-150-088-MY2. Our gratitude goes to Dr. Timothy Williams, Asia University, for his help in proof reading the manuscript.

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Lok Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurubanjerdjit, N., Tsai, J.J.P., Huang, CH. et al. Disturbance of Arabidopsis thaliana microRNA-regulated pathways by Xcc bacterial effector proteins. Amino Acids 46, 953–961 (2014). https://doi.org/10.1007/s00726-013-1646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1646-2

Keywords

Navigation