Skip to main content

Advertisement

Log in

Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

As the population of elderly people is growing rapidly, the number of individuals with dementia and cognitive impairment is also increasing. One of the preventive measures against cognitive decline is diet and different dietary factors have already been investigated. This review provides an overview of studies on dietary protein and cognitive functioning and cognitive decline. Also studies on the individual amino acids that are related to brain function, tryptophan and tyrosine, are discussed. Overall, the role of dietary protein intake on cognitive functioning as well as cognitive decline has hardly been studied; we found eight observational studies and three intervention studies. More studies investigated the role of tryptophan (14 studies) and tyrosine (nine studies) in relation to cognitive functioning, but all these studies were performed in young adult populations and mostly under special conditions. Research in elderly populations, in particular, is warranted. Also more research is needed to come to definitive conclusions and specific recommendations regarding protein intake or intake of specific amino acids for maintaining optimal cognitive functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnsten AF, Cai JX et al (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15(5 Pt 1):3429–3439

    PubMed  CAS  Google Scholar 

  • Ashcroft GW, Eccleston D et al (1965) 5-hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. I. Methods. J Neurochem 12(6):483–492

    Article  PubMed  CAS  Google Scholar 

  • Auyeung TW, Lee JS et al (2011) Physical frailty predicts future cognitive decline—a four-year prospective study in 2737 cognitively normal older adults. J Nutr Health Aging 15(8):690–694

    Article  PubMed  CAS  Google Scholar 

  • Backman L, Nyberg L et al (2006) The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci Biobehav Rev 30(6):791–807

    Article  PubMed  Google Scholar 

  • Banderet LE, Lieberman HR (1989) Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res Bull 22(4):759–762

    Article  PubMed  CAS  Google Scholar 

  • Beasley JM, LaCroix AZ et al (2010) Protein intake and incident frailty in the Women’s Health Initiative observational study. J Am Geriatr Soc 58(6):1063–1071

    Article  PubMed  Google Scholar 

  • Booij L, Merens W et al (2006) Diet rich in alpha-lactalbumin improves memory in unmedicated recovered depressed patients and matched controls. J Psychopharmacol 20(4):526–535

    Article  PubMed  CAS  Google Scholar 

  • Buchman AS, Boyle PA et al (2007) Frailty is associated with incident Alzheimer’s disease and cognitive decline in the elderly. Psychosom Med 69(5):483–489

    Article  PubMed  Google Scholar 

  • Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130

    Article  PubMed  Google Scholar 

  • Cunliffe A, Obeid OA et al (1998) A placebo controlled investigation of the effects of tryptophan or placebo on subjective and objective measures of fatigue. Eur J Clin Nutr 52(6):425–430

    Article  PubMed  CAS  Google Scholar 

  • Deijen JB, Orlebeke JF (1994) Effect of tyrosine on cognitive function and blood pressure under stress. Brain Res Bull 33(3):319–323

    Article  PubMed  CAS  Google Scholar 

  • Deijen JB, Wientjes CJ et al (1999) Tyrosine improves cognitive performance and reduces blood pressure in cadets after one week of a combat training course. Brain Res Bull 48(2):203–209

    Article  PubMed  CAS  Google Scholar 

  • Dougherty DM, Marsh DM et al (2007) The effects of alcohol on laboratory-measured impulsivity after L: -tryptophan depletion or loading. Psychopharmacology 193(1):137–150

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom JD (1983) Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev 63(2):484–546

    PubMed  CAS  Google Scholar 

  • Fernstrom JD (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45(3):419–430

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom MH, Fernstrom JD (1987) Protein consumption increases tyrosine concentration and in vivo tyrosine hydroxylation rate in the light-adapted rat retina. Brain Res 401(2):392–396

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom MH, Fernstrom JD (1995) Brain tryptophan concentrations and serotonin synthesis remain responsive to food consumption after the ingestion of sequential meals. Am J Clin Nutr 61(2):312–319

    PubMed  CAS  Google Scholar 

  • Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137(6 Suppl 1):1539S–1547S (discussion 1548S)

    PubMed  CAS  Google Scholar 

  • Fischer K, Colombani PC et al (2002) Carbohydrate to protein ratio in food and cognitive performance in the morning. Physiol Behav 75(3):411–423

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1981) Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6(2):177–187

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JS, Goodwin JM et al (1983) Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA 249(21):2917–2921

    Article  PubMed  CAS  Google Scholar 

  • Hansen RA, Gartlehner G et al (2008) Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 3(2):211–225

    PubMed  CAS  Google Scholar 

  • Jakobsen LH, Kondrup J et al (2011) Effect of a high protein meat diet on muscle and cognitive functions: a randomised controlled dietary intervention trial in healthy men. Clin Nutr 30(3):303–311

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RJ, Greenwood CE et al (2001) Dietary protein, carbohydrate, and fat enhance memory performance in the healthy elderly. Am J Clin Nutr 74(5):687–693

    PubMed  CAS  Google Scholar 

  • Klafki HW, Staufenbiel M et al (2006) Therapeutic approaches to Alzheimer’s disease. Brain 129(Pt 11):2840–2855

    Article  PubMed  Google Scholar 

  • La Rue A, Koehler KM et al (1997) Nutritional status and cognitive functioning in a normally aging sample: a 6-y reassessment. Am J Clin Nutr 65(1):20–29

    PubMed  Google Scholar 

  • Lieberman HR, Corkin S et al (1985) The effects of dietary neurotransmitter precursors on human behavior. Am J Clin Nutr 42(2):366–370

    PubMed  CAS  Google Scholar 

  • Luciana M, Burgund ED et al (2001) Effects of tryptophan loading on verbal, spatial and affective working memory functions in healthy adults. J Psychopharmacol 15(4):219–230

    Article  PubMed  CAS  Google Scholar 

  • Magill RA, Waters WF et al (2003) Effects of tyrosine, phentermine, caffeine d-amphetamine, and placebo on cognitive and motor performance deficits during sleep deprivation. Nutr Neurosci 6(4):237–246

    Article  PubMed  CAS  Google Scholar 

  • Mahoney CR, Castellani J et al (2007) Tyrosine supplementation mitigates working memory decrements during cold exposure. Physiol Behav 92(4):575–582

    Article  PubMed  CAS  Google Scholar 

  • Markus CR, Panhuysen G et al (1998) Does carbohydrate-rich, protein-poor food prevent a deterioration of mood and cognitive performance of stress-prone subjects when subjected to a stressful task? Appetite 31(1):49–65

    Article  PubMed  CAS  Google Scholar 

  • Markus CR, Panhuysen G et al (1999) Carbohydrate intake improves cognitive performance of stress-prone individuals under controllable laboratory stress. Br J Nutr 82(6):457–467

    PubMed  CAS  Google Scholar 

  • Markus CR, Olivier B et al (2002) Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am J Clin Nutr 75(6):1051–1056

    PubMed  CAS  Google Scholar 

  • Markus CR, Jonkman LM et al (2005) Evening intake of alpha-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am J Clin Nutr 81(5):1026–1033

    PubMed  CAS  Google Scholar 

  • McEntee WJ, Crook TH (1991) Serotonin, memory, and the aging brain. Psychopharmacology 103(2):143–149

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn D, Riedel WJ et al (2009) Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33(6):926–952

    Article  PubMed  CAS  Google Scholar 

  • Morgan RM, Parry AM et al (2007) Effects of elevated plasma tryptophan on brain activation associated with the Stroop task. Psychopharmacology 190(3):383–389

    Article  PubMed  CAS  Google Scholar 

  • Neri DF, Wiegmann D et al (1995) The effects of tyrosine on cognitive performance during extended wakefulness. Aviat Space Environ Med 66(4):313–319

    PubMed  CAS  Google Scholar 

  • Nes M, Sem SW et al (1988) Dietary intakes and nutritional status of old people with dementia living at home in Oslo. Eur J Clin Nutr 42(7):581–593

    PubMed  CAS  Google Scholar 

  • Ortega RM, Requejo AM et al (1997) Dietary intake and cognitive function in a group of elderly people. Am J Clin Nutr 66(4):803–809

    PubMed  CAS  Google Scholar 

  • Pilcher JJ, Huffcutt AI (1996) Effects of sleep deprivation on performance: a meta-analysis. Sleep 19(4):318–326

    PubMed  CAS  Google Scholar 

  • Raina P, Santaguida P et al (2008) Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med 148(5):379–397

    Article  PubMed  Google Scholar 

  • Roberts RO, Roberts LA et al (2012) Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis 32(2):329–339

    PubMed  CAS  Google Scholar 

  • Salerno-Kennedy R, Cashman KD (2007) The relationship between nutrient intake and cognitive performance in people at risk of dementia. Ir J Med Sci 176(3):193–198

    Article  PubMed  CAS  Google Scholar 

  • Sayegh R, Schiff I et al (1995) The effect of a carbohydrate-rich beverage on mood, appetite, and cognitive function in women with premenstrual syndrome. Obstet Gynecol 86(4 Pt 1):520–528

    PubMed  CAS  Google Scholar 

  • Schmitt JA, Jorissen BL et al (2005) Memory function in women with premenstrual complaints and the effect of serotonergic stimulation by acute administration of an alpha-lactalbumin protein. J Psychopharmacol 19(4):375–384

    Article  PubMed  CAS  Google Scholar 

  • Sharp T, Bramwell SR et al (1992) Effect of acute administration of l-tryptophan on the release of 5-HT in rat hippocampus in relation to serotoninergic neuronal activity: an in vivo microdialysis study. Life Sci 50(17):1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Shurtleff D, Thomas JR et al (1994) Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav 47(4):935–941

    Article  PubMed  CAS  Google Scholar 

  • Sobczak S, Honig A et al (2003) Pronounced cognitive deficits following an intravenous l-tryptophan challenge in first-degree relatives of bipolar patients compared to healthy controls. Neuropsychopharmacology 28(4):711–719

    Article  PubMed  CAS  Google Scholar 

  • Tam SY, Roth RH (1997) Mesoprefrontal dopaminergic neurons: can tyrosine availability influence their functions? Biochem Pharmacol 53(4):441–453

    Article  PubMed  CAS  Google Scholar 

  • Thomas DE, Chung AOKO et al (1986) Tryptophan and nutritional status of patients with senile dementia. Psychol Med 16(2):297–305

    Article  PubMed  CAS  Google Scholar 

  • Thomas JR, Lockwood PA et al (1999) Tyrosine improves working memory in a multitasking environment. Pharmacol Biochem Behav 64(3):495–500

    Article  PubMed  CAS  Google Scholar 

  • Tieland M, van de Rest O et al (2012) Protein supplementation improves physical performance in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 13(8):720–726

    Article  PubMed  Google Scholar 

  • USDA Agricultural Research Service (2013) Data tables: results from USDA’s 1996 Continuing Survey of Food Intakes by Individuals and 1996 Diet and Health Knowledge Survey. http://www.ars.usda.gov/main/site_main.htm?modecode=12-35-50-00. Accessed 26 Feb 2013

  • Winograd CH, Jacobson DH et al (1991) Nutritional intake in patients with senile dementia of the Alzheimer type. Alzheimer Dis Assoc Disord 5(3):173–180

    Article  PubMed  CAS  Google Scholar 

  • Winokur A, Lindberg ND et al (1986) Hormonal and behavioral effects associated with intravenous l-tryptophan administration. Psychopharmacology 88(2):213–219

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization and Alzheimer’s Disease International (2012) Dementia: a public health priority. http://www.who.int/mental_health/publications/dementia_report_2012. Accessed 19 May 2012

  • Yeghiayan SK, Luo S et al (2001) Tyrosine improves behavioral and neurochemical deficits caused by cold exposure. Physiol Behav 72(3):311–316

    Article  PubMed  CAS  Google Scholar 

  • Young VR (1990) Amino acids and proteins in relation to the nutrition of elderly people. Age Ageing 19(4):S10–S24

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest and all authors have contributed to and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondine van de Rest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Rest, O., van der Zwaluw, N.L. & de Groot, L.C.P.G.M. Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids 45, 1035–1045 (2013). https://doi.org/10.1007/s00726-013-1583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1583-0

Keywords

Navigation