Skip to main content
Log in

Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4′-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4′,3′-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARE:

Antioxidant responsive element

DCF-DA:

2′,7′-Dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified Eagle’s medium

ELISA:

Enzyme-linked immunosorbent assay

Glu:

Glutamate

HO-1:

Heme oxygenase-1

MAPK:

Mitogen-activated protein kinase

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide

Nrf2:

Nuclear transcription factor-E2-related factor 2

OD:

Optical density

PBS:

Phosphate-buffered saline

Pic:

Piceatannol

PI3K:

Phosphoinositide 3-kinase

PKC:

Protein kinase C

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

SnPP:

Tin protoporphyrin IX (SnPP)

RuCO:

Tricarbonyldichlororuthenium-(II)-dimer

References

  • Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A, Forloni G (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1–42) peptide. J Neurochem 110:1445–1456

    Article  PubMed  CAS  Google Scholar 

  • Albani D, Polito L, Signorini A, Forloni G (2010) Neuroprotective properties of resveratrol in different neurodegenerative disorders. BioFactors 36:370–376

    Article  PubMed  CAS  Google Scholar 

  • Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release 158:182–193

    Article  PubMed  CAS  Google Scholar 

  • Bastianetto S, Dumont Y, Han Y, Quirion R (2009) Comparative neuroprotective properties of stilbene and catechin analogs: action via a plasma membrane receptor site? CNS Neurosci Ther 15:76–83

    Article  PubMed  CAS  Google Scholar 

  • Billack B, Radkar V, Adiabouah C (2008) In vitro evaluation of the cytotoxic and anti-proliferative properties of resveratrol and several of its analogs. Cell Mol Biol Lett 13:553–569

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury SA, Kishino K, Satoh R, Hashimoto K, Kikuchi H, Nishikawa H, Shirataki Y, Sakagami H (2005) Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res 25:2055–2063

    PubMed  CAS  Google Scholar 

  • Eghwrudjakpor PO, Allison AB (2010) Oxidative stress following traumatic brain injury: enhancement of endogenous antioxidant defense systems and the promise of improved outcome. Niger J Med 19:14–21

    PubMed  CAS  Google Scholar 

  • Esposito E, Cuzzocrea S (2010) New therapeutic strategy for Parkinson’s and Alzheimer’s disease. Curr Med Chem 17:2764–2774

    Article  PubMed  CAS  Google Scholar 

  • Frombaum M, Therond P, Djelidi R, Beaudeux JL, Bonnefont-Rousselot D, Borderie D (2011) Piceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stress. Free Radic Res 45:293–302

    Article  PubMed  CAS  Google Scholar 

  • Fukui M, Choi HJ, Zhu BT (2010) Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 49:800–813

    Article  PubMed  CAS  Google Scholar 

  • Jazwa A, Cuadrado A (2010) Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets 11:1517–1531

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116:1111–1162

    Article  PubMed  CAS  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  PubMed  CAS  Google Scholar 

  • Kaplan S, Bisleri G, Morgan JA, Cheema FH, Oz MC (2005) Resveratrol, a natural red wine polyphenol, reduces ischemia–reperfusion-induced spinal cord injury. Ann Thorac Surg 80:2242–2249

    Article  PubMed  Google Scholar 

  • Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15:7792–7814

    Article  PubMed  CAS  Google Scholar 

  • Kim HP, Pae HO, Back SH, Chung SW, Woo JM, Son Y, Chung HT (2011) Heme oxygenase-1 comes back to endoplasmic reticulum. Biochem Biophys Res Commun 404:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Kim YM, Kang SD, Han YM, Pae HO (2012) Effects of resveratrol and trans-3,5,4’-trimethoxystilbene on glutamate-induced cytotoxicity, heme oxygenase-1, and sirtuin 1 in HT22 neuronal cells. Biomol Ther 20:306–312

    Article  CAS  Google Scholar 

  • Lee HH, Park SA, Almazari I, Kim EH, Na HK, Surh YJ (2010) Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling. Arch Biochem Biophys 501:142–150

    Article  PubMed  CAS  Google Scholar 

  • Li F, Gong Q, Dong H, Shi J (2012) Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 18:27–33

    Article  PubMed  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280:37377–37382

    Article  PubMed  CAS  Google Scholar 

  • Morimoto BH, Koshland DE Jr (1990) Induction and expression of long- and short-term neurosecretory potentiation in a neural cell line. Neuron 5:875–880

    Article  PubMed  CAS  Google Scholar 

  • Pae HO, Kim EC, Chung HT (2008) Integrative survival response evoked by heme oxygenase-1 and heme metabolites. J Clin Biochem Nutr 42:197–203

    Article  PubMed  CAS  Google Scholar 

  • Pae HO, Son Y, Kim NH, Jeong HJ, Chang KC, Chung HT (2010) Role of heme oxygenase in preserving vascular bioactive NO. Nitric Oxide 23:251–257

    Article  PubMed  CAS  Google Scholar 

  • Panickar KS, Anderson RA (2011) Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int J Mol Sci 12:8181–8207

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82

    Article  PubMed  CAS  Google Scholar 

  • Raval AP, Dave KR, Pérez-Pinzón MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26:1141–1147

    PubMed  CAS  Google Scholar 

  • Richard T, Pawlus AD, Iglésias ML, Pedrot E, Waffo-Teguo P, Mérillon JM, Monti JP (2011) Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci 1215:103–108

    Article  PubMed  CAS  Google Scholar 

  • Robb EL, Stuart JA (2010) Trans-resveratrol as a neuroprotectant. Molecules 15:1196–1212

    Article  PubMed  CAS  Google Scholar 

  • Roupe KA, Yáñez JA, Teng XW, Davies NM (2006) Pharmacokinetics of selected stilbenes. Rhapontigenin, piceatannol, and pinosylvin in rats. J Pharm Pharmacol 58:1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Sakata Y, Zhuang H, Kwansa H, Koehler RC, Doré S (2010) Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp Neurol 224:325–329

    Article  PubMed  CAS  Google Scholar 

  • Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41:375–383

    Article  PubMed  CAS  Google Scholar 

  • Tan JW, Tham CL, Israf DA, Lee SH, Kim MK (2013) Neuroprotective effects of biochanin a against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition. Neurochem Res 38:512–518

    Article  PubMed  CAS  Google Scholar 

  • Wung BS, Hsu MC, Wu CC, Hsieh CW (2006) Piceatannol upregulates endothelial heme oxygenase-1 expression via novel protein kinase C and tyrosine kinase pathways. Pharmacol Res 53:113–122

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Sung SH, Kim J, Kim YC (2011) Neuroprotective diarylheptanoids from the leaves and twigs of Juglans sinensis against glutamate-induced toxicity in HT22 cells. Planta Med 77:841–845

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Shin YG, Chow A, Li Y, Kosmeder JW, Lee YS, Hirschelman WH, Pezzuto JM, Mehta RG, van Breemen RB (2002) Human, rat, and mouse metabolism of resveratrol. Pharm Res 19:1907–1914

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0030717).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Ock Pae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, Y., Byun, S.J. & Pae, HO. Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells. Amino Acids 45, 393–401 (2013). https://doi.org/10.1007/s00726-013-1518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1518-9

Keywords

Navigation