Skip to main content
Log in

N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Food processing leads to a variety of chemical modifications of amino acids in food proteins. Recent studies have shown that some modified amino acids resulting from glycation reactions can pass the intestinal barrier when they are bound in dipeptides. In this study, we investigated as to what extent modified amino acids are released from post-translationally modified casein during simulated gastrointestinal digestion. Casein was enriched with N-ε-fructoselysine, N-ε-carboxymethyllysine, and lysinoalanine, in different degrees of modification. The casein samples were subjected to a two-step proteolysis procedure, simulating gastrointestinal digestion. The digestibility of modified casein as measured by analytical size-exclusion chromatography (SEC) decreased with increasing degree of modification especially after enrichment of fructoselysine and lysinoalanine. Semi-preparative SEC of digested casein samples revealed that fructoselysine and carboxymethyllysine are released bound in peptides smaller than 1,000 Da, which is comparable to native amino acids. The glycation compounds should, therefore, be available for absorption. Lysinoalanine as a crosslinking amino acid, however, is mostly released into longer peptides of at least 30–40 amino acids which should strongly impair its absorption availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAA:

Amino acid analysis

AGE:

Advanced glycation end product

Bis-CML:

N,N-bis(carboxymethyl)-l-lysine

BW:

Body weight

CML:

N-ε-carboxymethyllysine

FL:

N-ε-fructoselysine

HPLC:

High pressure liquid chromatography

LAL:

Lysinoalanine

MG-H1:

Methylglyoxal-derived hydroimidazolone 1

MRP:

Maillard reaction product

MW:

Molecular weight

PBS:

Phosphate buffered saline

SEC:

Size-exclusion chromatography

WRF:

Tryptophan-rich fraction

YRF:

Tyrosine-rich fraction

References

  • Adibi SA, Mercer DW (1973) Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentration after meals. J Clin Invest 52:1586–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Agudelo RA, Gauthier SF, Pouliot Y, Marin J, Savoie L (2004) Kinetics of peptide fraction release during in vitro digestion of casein. J Sci Food Agric 84:325–332

    Article  CAS  Google Scholar 

  • Alamir I, Niquet-Leridon C, Jacolot P, Rodriguez C, Orosco M, Anton PM, Tessier FJ (2012) Digestibility of extruded proteins and metabolic transit of N-ε-carboxymethyllysine in rats. Amino Acids. doi:10.1007/s00726-012-1427-3

    PubMed  Google Scholar 

  • Ames JM (2007) Evidence against dietary advanced glycation endproducts being a risk to human health. Mol Nutr Food Res 51:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Bohak Z (1964) N-ε-(d,l-2-Amino-2-carboxyethyl)-l-lysine, a new amino acid formed on alkaline treatment of protein. J Biol Chem 239:2878–2887

    CAS  PubMed  Google Scholar 

  • Brandsch M, Brandsch C (2003) Intestinal transport of amino acids, peptides and proteins. In: Souffrant WB, Metges CC (eds) Progress in research on energy and protein metabolism. Wageningen Academic publishers, Wageningen, pp 667–680

    Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  Google Scholar 

  • Brownlee M, Vlassara H, Cerami A (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101:527–537

    Article  CAS  PubMed  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  CAS  PubMed  Google Scholar 

  • DIN Deutsches Institut für Normung e.V. (2004) Soil quality—Absorption availability of organic and inorganic pollutants from contaminated soil material. Beuth Verlag, DIN 19738, Berlin

  • Finot PA, Magnenat E (1981) Metabolic transit of early and advanced Maillard products. Prog Food Nutr Sci 5:193–207

    CAS  PubMed  Google Scholar 

  • Förster A, Kühne Y, Henle T (2005) Studies on absorption and elimination of dietary Maillard reaction products. Ann NY Acad Sci 1043:474–481

    Article  PubMed  Google Scholar 

  • Friedman M (1999) Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J Agric Food Chem 47:1295–1319

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Zahnley JC, Masters PM (1981) Relationship between in vitro digestibility of casein and its content of lysinoalanine and d-amino acids. J Food Sci 46:127–134

    Article  CAS  Google Scholar 

  • Glorieux G, Helling R, Henle T, Brunet P, Deppisch R, Lameire N, Vanholder R (2004) In vitro evidence for immune activating effect of specific AGE structures retained in uremia. Kidney Int 66:1873–1880

    Article  CAS  PubMed  Google Scholar 

  • Hack A, Selenka F (1996) Mobilization of PAH and PCB from contaminated soil using a digestive tract model. Toxicol Lett 88:199–210

    Article  CAS  PubMed  Google Scholar 

  • Hegele J, Buetler T, Delatour T (2008) Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products. Anal Chim Acta 617:85–96

    Article  CAS  PubMed  Google Scholar 

  • Hellwig M, Henle T (2010) Formyline, a new glycation compound from the reaction of lysine and 3-deoxypentosone. Eur Food Res Technol 230:903–914

    Article  CAS  Google Scholar 

  • Hellwig M, Löbner J, Schneider A, Schwarzenbolz U, Henle T (2009) Release of protein-bound N-ε-(γ-Glutamyl)-lysine during simulated gastrointestinal digestion. Czech J Food Sci 27:S153–S155

    CAS  Google Scholar 

  • Hellwig M, Geissler S, Matthes R, Peto A, Silow C, Brandsch M, Henle T (2011) Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Chem Bio Chem 12:1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Henle T (2003) AGEs in foods: do they play a role in uremia? Kidney Int 63:S145–S147

    Article  Google Scholar 

  • Henle T (2005) Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 29:313–322

    Article  CAS  PubMed  Google Scholar 

  • Henle T (2007) Dietary advanced glycation end products—a risk to human health? A call for an interdisciplinary debate. Mol Nutr Food Res 51:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Henle T, Walter AW, Klostermeyer H (1993) Detection and identification of the cross-linking amino acids N-τ- and N-π-(2′-amino-2′-carboxyethyl)-l-histidine (“histidinoalanine”, HAL) in heated milk products. Z Lebensm Unters Forsch 197:114–117

    Article  CAS  PubMed  Google Scholar 

  • Henle T, Zehetner G, Klostermeyer H (1995) Fast and sensitive determination of furosine. Z Lebensm Unters Forsch 200:235–237

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ledesma B, Amigo L, Ramos M, Recio I (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J Agric Food Chem 52:1504–1510

    Article  PubMed  Google Scholar 

  • Hull GLJ, Woodside JV, Ames JM, Cuskelly GJ (2012) N-ε-(carboxymethyl)lysine content in foods commonly consumed in a Western style diet. Food Chem 131:170–174

    Article  CAS  Google Scholar 

  • Krause W, Freimuth U (1985) Zur Alkalibehandlung von Proteinen. 2. Mitt. Racemisierung und enzymatische Hydrolyse. Nahrung 29:957–968

    Article  CAS  Google Scholar 

  • Krause R, Knoll K, Henle T (2003) Studies on the formation of furosine and pyridosine during acid hydrolysis of different Amadori products of lysine. Eur Food Res Technol 216:277–283

    CAS  Google Scholar 

  • Kuipers BJH, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem 55:5445–5451

    Article  CAS  PubMed  Google Scholar 

  • Ledl F, Schleicher E (1990) New aspects of the Maillard reaction in foods and in the human body. Angew Chem Ind Ed 29:565–594

    Article  Google Scholar 

  • Lee K, Erbersdobler HF (1994) Balance experiments on human volunteers with ε-fructoselysine (FL) and lysinoalanine (LAL). In: Labuza TP (ed) Maillard reactions in chemistry, food, and health. The Royal Society of Chemistry, Cambridge, pp 358–363

    Chapter  Google Scholar 

  • Madsen JL (1992) Effect of gender, age, and body mass index on gastrointestinal transit times. Dig Dis Sci 37:1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Lin X, Odle J, Whittaker A, van Kempen TATG (2004) Refining in vitro digestibility assays: fractionation of digestible and indigestible peptides. J Anim Sci 82:1669–1677

    CAS  PubMed  Google Scholar 

  • Resmini P, Pellegrino L, Battelli G (1990) Accurate quantification of furosine in milk and dairy products by a direct HPLC method. Ital J Food Sci 3:173–183

    Google Scholar 

  • Rockland LB (1960) Saturated salt solutions for static control of relative humidity between 5 °C and 40 °C. Anal Chem 32:1375–1376

    Article  CAS  Google Scholar 

  • Savoie L, Galibois I, Parent G, Charbonneau R (1988) Sequential release of amino acids and peptides during in vitro digestion of casein and rapeseed proteins. Nutr Res 8:1319–1326

    Article  CAS  Google Scholar 

  • Savoie L, Parent G, Galibois I (1991) Effects of alkali treatment on the in vitro digestibility of proteins and the release of amino acids. J Sci Food Agric 56:363–372

    Article  CAS  Google Scholar 

  • Šebeková K, Somoza V (2007) Dietary advanced glycation endproducts and their health effects—PRO. Mol Nutr Food Res 51:1079–1084

    Article  PubMed  Google Scholar 

  • Semba RD, Ang A, Talegawkar S, Crasto C, Dalal M, Jardack P, Traber MG, Ferrucci L, Arab L (2012) Dietary intake associated with serum versus urinary carboxymethyl-lysine, a major advanced glycation endproduct, in adults: the Energetics Study. Eur J Clin Nutr 66:3–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somoza V, Wenzel E, Weiß C, Clawin-Rädecker I, Grübel N, Erbersdobler HF (2006) Dose-dependent utilization of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats. Mol Nutr Food Res 50:833–841

    Article  CAS  PubMed  Google Scholar 

  • Sternberg M, Kim CY (1977) Lysinoalanine formation in protein food ingredients. Adv Exp Med Biol 86B:73–84

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawney A (2003) Quantitative screening of advanced glycation end products in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    Article  CAS  PubMed  Google Scholar 

  • Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, Vlassara H (2007) Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 62:427–433

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    Article  PubMed  Google Scholar 

  • Vorob’ev MM, Parent G, Savoie L (1996) Quantitative comparison of casein and rapeseed proteolysis by pancreatin. Nahrung 40:248–255

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Karla Schlosser, Institute of Food Chemistry, TU Dresden, for performing the amino acid analyses. This work was supported by a research grant of the Deutsche Forschungsgemeinschaft (HE 2306/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Henle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellwig, M., Matthes, R., Peto, A. et al. N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion. Amino Acids 46, 289–299 (2014). https://doi.org/10.1007/s00726-013-1501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1501-5

Keywords

Navigation