Skip to main content
Log in

99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

CD13 receptor plays a critical role in tumor angiogenesis and metastasis. We therefore aimed to develop 99mTc-labeled monomeric and dimeric NGR-containing peptides, namely, NGR1 and NGR2, for SPECT imaging of CD13 expression in HepG2 hepatoma xenografts. Both NGR-containing monomer and dimer were synthesized and labeled with 99mTc. In vivo receptor specificity was demonstrated by successful blocking of tumor uptake of 99mTc-NGR dimer in the presence of 20 mg/kg NGR2 peptide. Western blot and immunofluorescence staining confirmed the CD13 expression in HepG2 cells. The NGR dimer showed higher binding affinity and cell uptake in vitro than the NGR-containing monomer, presumably due to a multivalency effect. 99mTc-Labeled monomeric and dimeric NGR-containing peptides were subjected to SPECT imaging and biodistribution studies. SPECT scans were performed in HepG2 tumor-bearing mice at 1, 4, 12, and 24 h post-injection of ~7.4 MBq tracers. The metabolism of tracers was determined in major organs at different time points after injection which demonstrated rapid, significant tumor uptake and slow tumor washout for both traces. Predominant clearance from renal and hepatic system was also observed in 99mTc-NGR1 and 99mTc-NGR2. In conclusion, monomeric and dimeric NGR peptide were developed and labeled with 99mTc successfully, while the high integrin avidity and long retention in tumor make 99mTc-NGR dimer a promising agent for tumor angiogenesis imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arap W, Pasqualini R et al (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    Article  PubMed  CAS  Google Scholar 

  • Bhagwat SV, Lahdenranta J et al (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97(3):652–659

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Conti PS (2010) Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev 62(11):1005–1022

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Tohme M et al (2004) Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3(2):96–104

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Sun X et al (2012) Evaluation of (6)(4)Cu labeled GX1: a phage display peptide probe for PET imaging of tumor vasculature. Mol Imaging Biol 14(1):96–105

    Article  PubMed  Google Scholar 

  • Corti A, Ponzoni M (2004) Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drugs. Ann N Y Acad Sci 1028:104–112

    Article  PubMed  CAS  Google Scholar 

  • Corti A, Giovannini M et al (2010) Immunomodulatory agents with antivascular activity in the treatment of non-small cell lung cancer: focus on TLR9 Agonists, IMiDs and NGR-TNF. J Oncol 2010:732680

    Article  PubMed  Google Scholar 

  • Curnis F, Arrigoni G et al (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62(3):867–874

    PubMed  CAS  Google Scholar 

  • Dijkgraaf I, Yim CB et al (2011) PET imaging of alphavbeta(3) integrin expression in tumours with (6)(8)Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38(1):128–137

    Article  PubMed  CAS  Google Scholar 

  • Gregorc V, Zucali PA et al (2010) Phase II study of asparagine-glycine-arginine-human tumor necrosis factor alpha, a selective vascular targeting agent, in previously treated patients with malignant pleural mesothelioma. J Clin Oncol 28(15):2604–2611

    Article  PubMed  CAS  Google Scholar 

  • Kessler T, Schwoppe C et al (2008) Generation of fusion proteins for selective occlusion of tumor vessels. Curr Drug Discov Technol 5(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Lei H, Cao P et al (2010) Expression and functional characterization of tumor-targeted fusion protein composed of NGR peptide and 15-kDa actin fragment. Appl Biochem Biotechnol 162(4):988–995

    Article  PubMed  CAS  Google Scholar 

  • Lily Adar YS, Journoa Gal, David Ayelet (2011) Pro-apoptotic peptide-polymer conjugates to induce mitochondrial-dependent cell death. Polym Adv Technol 22:199–208

    Article  Google Scholar 

  • Meng J, Yan Z et al (2007) High-yield expression, purification and characterization of tumor-targeted IFN-alpha2a. Cytotherapy 9(1):60–68

    Article  PubMed  CAS  Google Scholar 

  • Ndinguri MW, Solipuram R et al (2009) Peptide targeting of platinum anti-cancer drugs. Bioconjug Chem 20(10):1869–1878

    Article  PubMed  CAS  Google Scholar 

  • Negussie AH, Miller JL et al (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release 143(2):265–273

    Article  PubMed  CAS  Google Scholar 

  • Oostendorp M, Douma K et al (2008) Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer Res 68(18):7676–7683

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Koivunen E et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    PubMed  CAS  Google Scholar 

  • Petrovic N, Schacke W et al (2007) CD13/APN regulates endothelial invasion and filopodia formation. Blood 110(1):142–150

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero A, Brader P et al (2010) Different strategies for reducing intestinal background radioactivity associated with imaging HSV1-tk expression using established radionucleoside probes. Mol Imaging 9(1):47–58

    PubMed  CAS  Google Scholar 

  • Santoro A, Rimassa L et al (2010) Phase II study of NGR-hTNF, a selective vascular targeting agent, in patients with metastatic colorectal cancer after failure of standard therapy. Eur J Cancer 46(15):2746–2752

    Article  PubMed  CAS  Google Scholar 

  • Schwoppe C, Kessler T et al (2010) Tissue-factor fusion proteins induce occlusion of tumor vessels. Thromb Res 125(Suppl 2):S143–S150

    Article  PubMed  Google Scholar 

  • van Hensbergen Y, Broxterman HJ et al (2004) Reduced growth, increased vascular area, and reduced response to cisplatin in CD13-overexpressing human ovarian cancer xenografts. Clin Cancer Res 10(3):1180–1191

    Article  PubMed  Google Scholar 

  • van Laarhoven HW, Fiedler W et al (2010) Phase I clinical and magnetic resonance imaging study of the vascular agent NGR-hTNF in patients with advanced cancers (European Organization for Research and Treatment of Cancer Study 16041). Clin Cancer Res 16(4):1315–1323

    Article  PubMed  Google Scholar 

  • von Wallbrunn A, Waldeck J et al (2008) In vivo optical imaging of CD13/APN-expression in tumor xenografts. J Biomed Opt 13(1):011007

    Article  Google Scholar 

  • Wu Y, Zhang X et al (2005) Micropet imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. J Nucl Med 46(10):1707–1718

    PubMed  CAS  Google Scholar 

  • Yang YS, Zhang X et al (2006) Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostate adenocarcinoma. Nucl Med Biol 33(3):371–380

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama Y, Ramakrishnan S (2005) Addition of an aminopeptidase N-binding sequence to human endostatin improves inhibition of ovarian carcinoma growth. Cancer 104(2):321–331

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Harada H et al (2005) Aminopeptidase N/CD13 targeting fluorescent probes: synthesis and application to tumor cell imaging. Peptides 26(11):2182–2187

    Article  PubMed  CAS  Google Scholar 

  • Zhao BJ, Ke XY et al (2011) The antiangiogenic efficacy of NGR-modified PEG-DSPE micelles containing paclitaxel (NGR-M-PTX) for the treatment of glioma in rats. J Drug Target 19(5):382–390

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30970847, 30800275, 30970846), the Program of the National Basic Research and Development Program of China (Grant No. 2011CB707704), and the Major Program of National Natural Science Foundation of China (Grant No. 81090274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Wenhui Ma and Fei Kang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Kang, F., Wang, Z. et al. 99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids 44, 1337–1345 (2013). https://doi.org/10.1007/s00726-013-1469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1469-1

Keywords

Navigation