Skip to main content

Advertisement

Log in

Perinatal taurine exposure affects adult arterial pressure control

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Taurine is an abundant, free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine’s contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin–angiotensin system, glucose–insulin interaction and changes to heart, blood vessels and kidney function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abebe W, Mozaffari MS (2000) Effects of chronic taurine treatment on reactivity of the rat aorta. Amino Acids 19:615–623

    CAS  PubMed  Google Scholar 

  • Abebe W, Mozaffari MS (2011) Role of taurine in the vasculature: an overview of experimental and human studies. Am J Cardiovasc Dis 1:293–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aerts L, Van Assche FA (2002) Taurine and taurine-deficiency in the perinatal period. J Perinat Med 30:281–286

    CAS  PubMed  Google Scholar 

  • Allen AM (2011) Role of angiotensin in the rostral ventrolateral medulla in the development and maintenance of hypertension. Curr Opin Pharmacol 11:117–123

    CAS  PubMed  Google Scholar 

  • Amiry-Moghaddam M, Nagelhus E, Ottersen OP (1994) Light- and electronmicroscopic distribution of taurine, an organic osmolyte, in rat renal tubule cells. Kidney Int 45:10–22

    CAS  PubMed  Google Scholar 

  • Anuradha CV, Balakrishnan SD (1999) Taurine attenuates hypertension and improves insulin sensitivity in the fructose-fed rat, an animal model of insulin resistance. Can J Physiol Pharmacol 77:749–754

    CAS  PubMed  Google Scholar 

  • Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ (2004) Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 47:1831–1837

    CAS  PubMed  Google Scholar 

  • Barnes SK, Ozanne SE (2011) Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol 106:323–336

    CAS  PubMed  Google Scholar 

  • Beevers G, Lip GY, O’Brien E (2001) ABC of hypertension: the pathophysiology of hypertension. BMJ 322:912–916

    CAS  PubMed  Google Scholar 

  • Bennis-Taleb N, Remacle C, Hoet JJ, Reusens B (1999) A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring. J Nutr 129:1613–1619

    CAS  PubMed  Google Scholar 

  • Berecek KH, Okuno T, Nagahama S, Oparil S (1983) Altered vascular reactivity and baroreflex sensitivity induced by chronic central administration of captopril in the spontaneously hypertensive rat. Hypertension 5:689–700

    CAS  PubMed  Google Scholar 

  • Bouckenooghe T, Remacle C, Reusens B (2006) Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care 9:728–733

    CAS  PubMed  Google Scholar 

  • Boujendar S, Reusens B, Merezak S, Ahn MT, Arany E, Hill D, Remacle C (2002) Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 45:856–866

    CAS  PubMed  Google Scholar 

  • Brezis M, Silva P, Epstein FH (1984) Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolism. Am J Physiol 247:H999–H1004

    CAS  PubMed  Google Scholar 

  • Brown LD, Green AS, Limesand SW, Rozance PJ (2011) Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Schol Ed) 3:428–444

    Google Scholar 

  • Chau C, Heu P, Chou SC, Miyahara JT, Ramanathan S (1983) Taurine content of cardiac tissue in spontaneously hypertensive rats. Zhongguo Yao Li Xue Bao 4:21–23

    CAS  PubMed  Google Scholar 

  • Chesney RW, Han X, Patters AB (2010) Taurine and the renal system. J Biomed Sci 17(Suppl 1):S4

    PubMed  Google Scholar 

  • Cooper MW, Lombardini JB (1981) Elevated blood taurine levels after myocardial infarction of cardiovascular surgery: is there any significance? Adv Exp Med Biol 139:191–205

    CAS  PubMed  Google Scholar 

  • Cruz CI, Ruiz-Torres P, del Moral RG, Rodriguez-Puyol M, Rodriguez-Puyol D (2000) Age-related progressive renal fibrosis in rats and its prevention with ACE inhibitors and taurine. Am J Physiol Renal Physiol 278:F122–F129

    CAS  PubMed  Google Scholar 

  • Dawson R Jr, Liu S, Eppler B, Patterson T (1999) Effects of dietary taurine supplementation or deprivation in aged male Fischer 344 rats. Mech Ageing Dev 107:73–91

    CAS  PubMed  Google Scholar 

  • Dawson R Jr, Liu S, Jung B, Messina S, Eppler B (2000) Effects of high salt diets and taurine on the development of hypertension in the stroke-prone spontaneously hypertensive rat. Amino Acids 19:643–665

    CAS  PubMed  Google Scholar 

  • de Oliveira CA, Latorraca MQ, de Mello MA, Carneiro EM (2011) Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models. Amino Acids 40:1027–1034

    PubMed  Google Scholar 

  • Denisov PI (1998) Contractile adrenergic responses of the arterial and venous vessels and transcapillary fluid exchange in the cat small intestine during taurine administration. Ross Fiziol Zh Im I M Sechenova 84:892–897

    CAS  PubMed  Google Scholar 

  • El IA, Boukarrou L, Splavnyk K, Zavyalova E, Meehan EF, L’Amoreaux W (2009) Functional implication of taurine in aging. Adv Exp Med Biol 643:199–206

    Google Scholar 

  • El IA, Yan X, Sidime F, L’Amoreaux W (2010) Neuro-endocrine basis for altered plasma glucose homeostasis in the Fragile X mouse. J Biomed Sci 17(Suppl 1):S8

    Google Scholar 

  • Erlich Y, Rosenthal T (1995) Effect of angiotensin-converting enzyme inhibitors on fructose induced hypertension and hyperinsulinaemia in rats. Clin Exp Pharmacol Physiol Suppl 22:S347–S349

    CAS  PubMed  Google Scholar 

  • Folkow B (1993) The pathophysiology of hypertension. Differences between young and elderly patients. Drugs 46(Suppl 2):3–7

    PubMed  Google Scholar 

  • Franconi F, Diana G, Fortuna A, Galietta G, Trombetta G, Valentini G, Seghieri G, Loizzo A (2004) Taurine administration during lactation modifies hippocampal CA1 neurotransmission and behavioural programming in adult male mice. Brain Res Bull 63:491–497

    CAS  PubMed  Google Scholar 

  • Fujita T, Sato Y (1984) The antihypertensive effect of taurine in DOCA-salt rats. J Hypertens Suppl 2:S563–S565

    CAS  PubMed  Google Scholar 

  • Fujita T, Sato Y (1988) Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates. J Clin Invest 82:993–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita T, Sato Y, Ando K (1986) Changes in cardiac and hypothalamic noradrenergic activity with taurine in DOCA-salt rats. Am J Physiol 251:H926–H933

    CAS  PubMed  Google Scholar 

  • Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vige A, Breton C, Reusens B, Remacle C, Vieau D, Ekstrom TJ, Jais JP, Junien C (2010) Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS ONE 5:e14398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghisolfi J (1987) Taurine and the premature. Biol Neonate 52(Suppl 1):78–86

    CAS  PubMed  Google Scholar 

  • Godfrey KM, Inskip HM, Hanson MA (2011) The long-term effects of prenatal development on growth and metabolism. Semin Reprod Med 29:257–265

    PubMed  PubMed Central  Google Scholar 

  • Grassi G, Seravalle G, Brambilla G, Mancia G (2012) The sympathetic nervous system and new nonpharmacologic approaches to treating hypertension: a focus on renal denervation. Can J Cardiol 28:311–317

    PubMed  Google Scholar 

  • Guo LJ, Athineos P (1995) Effects of hemodynamic changes on taurine release from posterior hypothalamus of freely moving rats. Zhongguo Yao Li Xue Bao 16:405–408

    CAS  PubMed  Google Scholar 

  • Guron G, Friberg P (2000) An intact renin–angiotensin system is a prerequisite for normal renal development. J Hypertens 18:123–137

    CAS  PubMed  Google Scholar 

  • Gutierrez OG Jr, Ikeda K, Nara Y, Deguan GU, Yamori Y (1994) Fish protein-rich diet attenuates hypertension induced by dietary NG-nitro-l-arginine in normotensive Wistar-Kyoto rats. Clin Exp Pharmacol Physiol 21:875–879

    CAS  PubMed  Google Scholar 

  • Hagar HH, El EE, Arafa M (2006) Taurine attenuates hypertension and renal dysfunction induced by cyclosporine A in rats. Clin Exp Pharmacol Physiol 33:189–196

    CAS  PubMed  Google Scholar 

  • Hano T, Kasano M, Tomari H, Iwane N (2009) Taurine suppresses pressor response through the inhibition of sympathetic nerve activity and the improvement in baro-reflex sensitivity of spontaneously hypertensive rats. Adv Exp Med Biol 643:57–63

    CAS  PubMed  Google Scholar 

  • Hara K, Nakamura M, Haranishi Y, Terada T, Kataoka K, Sata T (2011) Antinociceptive effect of intrathecal administration of hypotaurine in rat models of inflammatory and neuropathic pain. Amino Acids 43:397–404

    Google Scholar 

  • Harada H, Tsujino T, Watari Y, Nonaka H, Emoto N, Yokoyama M (2004) Oral taurine supplementation prevents fructose-induced hypertension in rats. Heart Vessels 19:132–136

    PubMed  Google Scholar 

  • Hart EC, Charkoudian N (2011) Sympathetic neural mechanisms in human blood pressure regulation. Curr Hypertens Rep 13:237–243

    CAS  PubMed  Google Scholar 

  • Hoet JJ, Ozanne S, Reusens B (2000) Influences of pre- and postnatal nutritional exposures on vascular/endocrine systems in animals. Environ Health Perspect 108(Suppl 3):563–568

    PubMed  PubMed Central  Google Scholar 

  • Holemans K, Gerber R, Meurrens K, De CF, Poston L, Van Assche FA (1999) Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br J Nutr 81:73–79

    CAS  PubMed  Google Scholar 

  • Horie R, Yamori Y, Nara Y, Sawamura M, Mano M (1987) Effects of sulphur amino acids on the development of hypertension and atherosclerosis in stroke-prone spontaneously hypertensive rats. J Hypertens Suppl 5:S223–S225

    CAS  PubMed  Google Scholar 

  • Hu J, Xu X, Yang J, Wu G, Sun C, Lv Q (2009) Antihypertensive effect of taurine in rat. Adv Exp Med Biol 643:75–84

    CAS  PubMed  Google Scholar 

  • Hultman K, Alexanderson C, Manneras L, Sandberg M, Holmang A, Jansson T (2007) Maternal taurine supplementation in the late pregnant rat stimulates postnatal growth and induces obesity and insulin resistance in adult offspring. J Physiol 579:823–833

    CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Iglesias-Barreira V, Ahn MT, Reusens B, Dahri S, Hoet JJ, Remacle C (1996) Pre- and postnatal low protein diet affect pancreatic islet blood flow and insulin release in adult rats. Endocrinology 137:3797–3801

    CAS  PubMed  Google Scholar 

  • Inoue A, Takahashi H, Lee LC, Iyoda I, Sasaki S, Okajima H, Takeda K, Yoshimura M, Nakagawa M, Ijichi H (1985) Centrally induced vasodepressor and sympathetic nerve responses to taurine. Jpn Circ J 49:1180–1184

    CAS  PubMed  Google Scholar 

  • Inoue A, Takahashi H, Lee LC, Sasaki S, Takeda K, Yoshimura M, Nakagawa M, Ijichi H (1986) Hypotensive responses to centrally administered taurine in DOCA-salt hypertensive and spontaneously hypertensive rats. Jpn Circ J 50:1215–1223

    CAS  PubMed  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    CAS  PubMed  Google Scholar 

  • Ito T, Oishi S, Takai M, Kimura Y, Uozumi Y, Fujio Y, Schaffer SW, Azuma J (2010) Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci 17(Suppl 1):S20

    PubMed  Google Scholar 

  • Julius S (1988) Transition from high cardiac output to elevated vascular resistance in hypertension. Am Heart J 116:600–606

    CAS  PubMed  Google Scholar 

  • Kang YS (2000) Taurine transport mechanism through the blood-brain barrier in spontaneously hypertensive rats. Adv Exp Med Biol 483:321–324

    CAS  PubMed  Google Scholar 

  • Kett MM, Denton KM (2011) Renal programming: cause for concern? Am J Physiol Regul Integr Comp Physiol 300:R791–R803

    CAS  PubMed  Google Scholar 

  • Khimsuksri S, Wyss JM, Paphangkorakit J, Jirakulsomchok D, Roysommuti S (2012) Perinatal taurine exposure affects patterns of autonomic nerve activity in adult male rats. Amino Acids 42:1504–1505

    Google Scholar 

  • Kim C, Cha YN (2009) Production of reactive oxygen and nitrogen species in phagocytes is regulated by taurine chloramine. Adv Exp Med Biol 643:463–472

    CAS  PubMed  Google Scholar 

  • Kim SJ, Ramesh C, Gupta H, Lee W (2007) Taurine-diabetes interaction: from involvement to protection. J Biol Regul Homeost Agents 21:63–77

    PubMed  Google Scholar 

  • Korang K, Milakofsky L, Hare TA, Hofford JM, Vogel WH (1996a) Levels of taurine, amino acids and related compounds in plasma, vena cava, aorta and heart of rats after taurine administration. Pharmacology 52:263–270

    CAS  PubMed  Google Scholar 

  • Korang K, Milakofsky L, Hare TA, Hofford JM, Vogel WH (1996b) Taurine administration raises plasma taurine levels and affects certain plasma amino acids and related compounds in rats. Adv Exp Med Biol 403:51–53

    CAS  PubMed  Google Scholar 

  • Kubo T, Kihara M, Misu Y (1989) Altered amino acid levels in brainstem regions of spontaneously hypertensive rats. Clin Exp Hypertens A 11:233–241

    CAS  PubMed  Google Scholar 

  • Kudriashov I, Denisov PI (2001) Effect of taurine on the microvessel exchange function and adrenergic response of veins and arteries in the cat skeletal muscle. Ross Fiziol Zh Im I M Sechenova 87:28–36

    PubMed  Google Scholar 

  • Kulthinee S, Wyss JM, Jirakulsomchok D, Roysommuti S (2010) High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats. J Biomed Sci 17(Suppl 1):S22

    PubMed  Google Scholar 

  • Kuriyama K, Ida S, Ohkuma S (1984) Alteration of cerebral taurine biosynthesis in spontaneously hypertensive rats. J Neurochem 42:1600–1606

    CAS  PubMed  Google Scholar 

  • Kuriyama K, Ida S, Ohkuma S, Tanaka Y (1985) Alteration of cerebral biosynthesis of taurine in spontaneously hypertensive and 3-acetylpyridine intoxicated rats. Prog Clin Biol Res 179:91–103

    CAS  PubMed  Google Scholar 

  • Lastra-Lastra G, Sowers JR, Restrepo-Erazo K, Manrique-Acevedo C, Lastra-Gonzalez G (2009) Role of aldosterone and angiotensin II in insulin resistance: an update. Clin Endocrinol (Oxf) 71:1–6

    CAS  Google Scholar 

  • Lautt WW, Daniels TR (1983) Differential effect of taurocholic acid on hepatic arterial resistance vessels and bile flow. Am J Physiol 244:G366–G369

    CAS  PubMed  Google Scholar 

  • Lee HK, Park KS, Cho YM, Lee YY, Pak YK (2005a) Mitochondria-based model for fetal origin of adult disease and insulin resistance. Ann N Y Acad Sci 1042:1–18

    CAS  PubMed  Google Scholar 

  • Lee YY, Park KS, Pak YK, Lee HK (2005b) The role of mitochondrial DNA in the development of type 2 diabetes caused by fetal malnutrition. J Nutr Biochem 16:195–204

    CAS  PubMed  Google Scholar 

  • Lee YY, Lee HJ, Lee SS, Koh JS, Jin CJ, Park SH, Yi KH, Park KS, Lee HK (2011) Taurine supplementation restored the changes in pancreatic islet mitochondria in the fetal protein-malnourished rat. Br J Nutr 106:1198–1206

    CAS  PubMed  Google Scholar 

  • Li N, Sawamura M, Nara Y, Ikeda K, Yamori Y (1996) Direct inhibitory effects of taurine on norepinephrine-induced contraction in mesenteric artery of stroke-prone spontaneously hypertensive rats. Adv Exp Med Biol 403:257–262

    CAS  PubMed  Google Scholar 

  • Li P, Kim SW, Li X, Datta S, Pond WG, Wu G (2009) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716

    PubMed  PubMed Central  Google Scholar 

  • Liu XQ, Li YH (2000) Epidemiological and nutritional research on prevention of cardiovascular disease in China. Br J Nutr 84(Suppl 2):S199–S203

    CAS  PubMed  Google Scholar 

  • Liu L, Mizushima S, Ikeda K, Hattori H, Miura A, Gao M, Nara Y, Yamori Y (2000) Comparative studies of diet-related factors and blood pressure among Chinese and Japanese: results from the China-Japan Cooperative Research of the WHO-CARDIAC Study. Cardiovascular Disease and Alimentary Comparison. Hypertens Res 23:413–420

    CAS  PubMed  Google Scholar 

  • Liu L, Liu L, Ding Y, Huang Z, He B, Sun S, Zhao G, Zhang H, Miki T, Mizushima S, Ikeda K, Nara Y, Yamori Y (2001) Ethnic and environmental differences in various markers of dietary intake and blood pressure among Chinese Han and three other minority peoples of China: results from the WHO Cardiovascular Diseases and Alimentary Comparison (CARDIAC) Study. Hypertens Res 24:315–322

    CAS  PubMed  Google Scholar 

  • Liu J, Liu L, Chen H (2011) Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction. Neuroscience 181:265–270

    CAS  PubMed  Google Scholar 

  • Lombardini JB, Cooper MW (1981) Elevated blood taurine levels in acute and evolving myocardial infarction. J Lab Clin Med 98:849–859

    CAS  PubMed  Google Scholar 

  • Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F (2011) Nutrition and human health from a sex-gender perspective. Mol Aspects Med 32:1–70

    CAS  PubMed  Google Scholar 

  • Merezak S, Hardikar AA, Yajnik CS, Remacle C, Reusens B (2001) Intrauterine low protein diet increases fetal beta-cell sensitivity to NO and IL-1 beta: the protective role of taurine. J Endocrinol 171:299–308

    CAS  PubMed  Google Scholar 

  • Militante JD, Lombardini JB (2002) Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23:381–393

    CAS  PubMed  Google Scholar 

  • Moriguchi EH, Moriguchi Y, Yamori Y (2004) Impact of diet on the cardiovascular risk profile of Japanese immigrants living in Brazil: contributions of World Health Organization CARDIAC and MONALISA studies. Clin Exp Pharmacol Physiol 31(Suppl 2):S5–S7

    PubMed  Google Scholar 

  • Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N, Quistorff B (2010a) A maternal low protein diet has pronounced effects on mitochondrial gene expression in offspring liver and skeletal muscle; protective effect of taurine. J Biomed Sci 17(Suppl 1):S38

    PubMed  Google Scholar 

  • Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N, Quistorff B (2010b) Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring’s liver and skeletal muscle; protective effect of taurine. Pediatr Res 67:47–53

    CAS  PubMed  Google Scholar 

  • Mozaffari MS, Schaffer SW (2002) Chronic taurine treatment ameliorates reduction in saline-induced diuresis and natriuresis. Kidney Int 61:1750–1759

    CAS  PubMed  Google Scholar 

  • Mozaffari MS, Azuma J, Patel C, Schaffer SW (1997) Renal excretory responses to saline load in the taurine-depleted and the taurine-supplemented rat. Biochem Pharmacol 54:619–624

    CAS  PubMed  Google Scholar 

  • Naismith DJ, Rana SK, Emery PW (1987) Metabolism of taurine during reproduction in women. Hum Nutr Clin Nutr 41:37–45

    CAS  PubMed  Google Scholar 

  • Nandhini AT, Anuradha CV (2004) Hoe 140 abolishes the blood pressure lowering effect of taurine in high fructose-fed rats. Amino Acids 26:299–303

    CAS  PubMed  Google Scholar 

  • Nara Y, Yamori Y, Lovenberg W (1978) Effect of dietary taurine on blood pressure in spontaneously hypertensive rats. Biochem Pharmacol 27:2689–2692

    CAS  PubMed  Google Scholar 

  • Nishida S, Satoh H (2009) Vascular modulation of rat aorta by taurine. Adv Exp Med Biol 643:37–46

    CAS  PubMed  Google Scholar 

  • Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR (2009) Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol 302:128–139

    CAS  PubMed  Google Scholar 

  • Ozaki T, Hawkins P, Nishina H, Steyn C, Poston L, Hanson MA (2000) Effects of undernutrition in early pregnancy on systemic small artery function in late-gestation fetal sheep. Am J Obstet Gynecol 183:1301–1307

    CAS  PubMed  Google Scholar 

  • Patrick L (2006) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11:114–127

    PubMed  Google Scholar 

  • Pellicer F, Lopez-Avila A, Coffeen U, Manuel Ortega-Legaspi J, Angel RD (2007) Taurine in the anterior cingulate cortex diminishes neuropathic nociception: a possible interaction with the glycine(A) receptor. Eur J Pain 11:444–451

    CAS  PubMed  Google Scholar 

  • Pepper MR, Black MM (2011) B12 in fetal development. Semin Cell Dev Biol 22:619–623

    CAS  PubMed  Google Scholar 

  • Petty MA, Di Francesco GF (1989) The cardiovascular effects of centrally administered taurine in anaesthetised and conscious rats. Eur J Pharmacol 162:359–364

    CAS  PubMed  Google Scholar 

  • Putnam K, Shoemaker R, Yiannikouris F, Cassis LA (2012) The renin–angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol 302:H1219–H1230

    CAS  PubMed  Google Scholar 

  • Racasan S, Braam B, van der Giezen DM, Goldschmeding R, Boer P, Koomans HA, Joles JA (2004) Perinatal l-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension 44:83–88

    CAS  PubMed  Google Scholar 

  • Rahman MM, Park HM, Kim SJ, Go HK, Kim GB, Hong CU, Lee YU, Kim SZ, Kim JS, Kang HS (2011) Taurine prevents hypertension and increases exercise capacity in rats with fructose-induced hypertension. Am J Hypertens 24:574–581

    CAS  PubMed  Google Scholar 

  • Roysommuti S, Mozaffari MS, Berecek KH, Wyss JM (1999) Lifetime treatment with captopril improves renal function in spontaneously hypertensive rats. Clin Exp Hypertens 21:1315–1325

    CAS  PubMed  Google Scholar 

  • Roysommuti S, Khongnakha T, Jirakulsomchok D, Wyss JM (2002) Excess dietary glucose alters renal function before increasing arterial pressure and inducing insulin resistance. Am J Hypertens 15:773–779

    CAS  PubMed  Google Scholar 

  • Roysommuti S, Lerdweeraphon W, Malila P, Jirakulsomchok D, Wyss JM (2009a) Perinatal taurine alters arterial pressure control and renal function in adult offspring. Adv Exp Med Biol 643:145–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roysommuti S, Suwanich A, Jirakulsomchok D, Wyss JM (2009b) Perinatal taurine depletion increases susceptibility to adult sugar-induced hypertension in rats. Adv Exp Med Biol 643:123–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roysommuti S, Suwanich A, Lerdweeraphon W, Thaeomor A, Jirakulsomchok D, Wyss JM (2009c) Sex dependent effects of perinatal taurine exposure on the arterial pressure control in adult offspring. Adv Exp Med Biol 643:135–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roysommuti S, Malila P, Jirakulsomchok D, Wyss JM (2010a) Adult renal function is modified by perinatal taurine status in conscious male rats. J Biomed Sci 17(Suppl 1):S31

    PubMed  Google Scholar 

  • Roysommuti S, Malila P, Lerdweeraphon W, Jirakulsomchok D, Wyss JM (2010b) Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats. J Biomed Sci 17(Suppl 1):S29

    PubMed  Google Scholar 

  • Roysommuti S, Thaewmor A, Lerdweeraphon W, Khimsuksri S, Jirakulsomchok D, Schaffer SW (2011) Perinatal taurine exposure alters neural control of arterial pressure via the renin–angiotensin system but not estrogen in rats. Amino Acids 41:S84

    Google Scholar 

  • Roysommuti S, Thaeomor A, Jirakulsomchok D, Wyss JM (2012) Renin–angiotensin system and estrogen attenuates glucose–insulin dysregulation in adult female rats that are perinatally depleted of taurine. Amino Acids 42:1503

    Google Scholar 

  • Sahin MA, Yucel O, Guler A, Doganci S, Jahollari A, Cingoz F, Arslan S, Gamsizkan M, Yaman H, Demirkilic U (2011) Is there any cardioprotective role of Taurine during cold ischemic period following global myocardial ischemia? J Cardiothorac Surg 6:31

    PubMed  PubMed Central  Google Scholar 

  • Sato Y, Ando K, Fujita T (1987) Role of sympathetic nervous system in hypotensive action of taurine in DOCA-salt rats. Hypertension 9:81–87

    CAS  PubMed  Google Scholar 

  • Sato Y, Ogata E, Fujita T (1991) Hypotensive action of taurine in DOCA-salt rats–involvement of sympathoadrenal inhibition and endogenous opiate. Jpn Circ J 55:500–508

    CAS  PubMed  Google Scholar 

  • Schaffer SW, Lombardini JB, Azuma J (2000) Interaction between the actions of taurine and angiotensin II. Amino Acids 18:305–318

    CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2

    PubMed  Google Scholar 

  • Shi YR, Qi YF, Bu DF, Gao L, Wang DY, Jiang HF, Pang YZ, Tang CS (2002) Dysfunction of myocardial and vascular taurine transport in spontaneously hypertensive rats. Sheng Li Xue Bao 54:359–364

    CAS  PubMed  Google Scholar 

  • Shivananjappa MM, Muralidhara (2012) Taurine attenuates maternal and embryonic oxidative stress in a streptozotocin-diabetic rat model. Reprod Biomed Online 24:558–566

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    CAS  PubMed  Google Scholar 

  • Suge R, Hosoe N, Furube M, Yamamoto T, Hirayama A, Hirano S, Nomura M (2007) Specific timing of taurine supplementation affects learning ability in mice. Life Sci 81:1228–1234

    CAS  PubMed  Google Scholar 

  • Terada T, Hara K, Haranishi Y, Sata T (2011) Antinociceptive effect of intrathecal administration of taurine in rat models of neuropathic pain. Can J Anaesth 58:630–637

    PubMed  Google Scholar 

  • Thaeomor A, Wyss JM, Jirakulsomchok D, Roysommuti S (2010) High sugar intake via the renin–angiotensin system blunts the baroreceptor reflex in adult rats that were perinatally depleted of taurine. J Biomed Sci 17(Suppl 1):S30

    PubMed  Google Scholar 

  • Thaeomor A, Wyss JM, Schaffer SW, Jirakulsomchok D, Roysommuti S (2012) Perinatal taurine supplementation affects neural control of arterial pressure via estrogen receptors in adult female rats. Amino Acids 42:1499

    Google Scholar 

  • Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, Lane RH, Desai M (2010) Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol 299:G1023–G1029

    CAS  PubMed  Google Scholar 

  • Ueno T, Iguro Y, Yotsumoto G, Fukumoto Y, Nakamura K, Miyamoto TA, Sakata R (2007) Taurine at early reperfusion significantly reduces myocardial damage and preserves cardiac function in the isolated rat heart. Resuscitation 73:287–295

    CAS  PubMed  Google Scholar 

  • Vasdev S, Stuckless J (2010) Antihypertensive effects of dietary protein and its mechanism. Int J Angiol 19:e7–e20

    PubMed  PubMed Central  Google Scholar 

  • Warskulat U, Andree B, Lusebrink J, Kohrer K, Haussinger D (2006) Switch from actin alpha1 to alpha2 expression and upregulation of biomarkers for pressure overload and cardiac hypertrophy in taurine-deficient mouse heart. Biol Chem 387:1449–1454

    CAS  PubMed  Google Scholar 

  • Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, Haussinger D (2007) Phenotype of the taurine transporter knockout mouse. Methods Enzymol 428:439–458

    CAS  PubMed  Google Scholar 

  • Wesseling S, Koeners MP, Kantouh F, Joles JA, Braam B (2009) Consequences of perinatal treatment with l-arginine and antioxidants for the renal transcriptome in spontaneously hypertensive rats. Pflugers Arch 458:513–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whaley-Connell A, Pulakat L, Demarco VG, Hayden MR, Habibi J, Henriksen EJ, Sowers JR (2011) Overnutrition and the cardiorenal syndrome: use of a rodent model to examine mechanisms. Cardiorenal Med 1:23–30

    PubMed  PubMed Central  Google Scholar 

  • Wu JY, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17(Suppl 1):S1

    PubMed  Google Scholar 

  • Wyss JM, Roysommuti S, King K, Kadisha I, Regan CP, Berecek KH (1994) Salt-induced hypertension in normotensive spontaneously hypertensive rats. Hypertension 23:791–796

    CAS  PubMed  Google Scholar 

  • Wyss JM, Mozaffari MS, Roysommuti S (1995) Contribution of the sympathetic nervous system to salt-sensitivity in lifetime captopril-treated spontaneously hypertensive rats. J Hypertens 13:1037–1042

    CAS  PubMed  Google Scholar 

  • Xue W, Zhang M, Li J, Wu D, Niu L, Liang Y (2008) Effects of taurine on aortic rings isolated from fructose-fed insulin resistance Sprague-Dawley rat are changed. Cardiovasc Drugs Ther 22:461–468

    CAS  PubMed  Google Scholar 

  • Yamada K, Moriguchi A, Mikami H, Okuda N, Higaki J, Ogihara T (1995) The effect of central amino acid neurotransmitters on the antihypertensive response to angiotensin blockade in spontaneous hypertension. J Hypertens 13:1624–1630

    CAS  PubMed  Google Scholar 

  • Yamori Y, Murakami S, Ikeda K, Nara Y (2004) Fish and lifestyle-related disease prevention: experimental and epidemiological evidence for anti-atherogenic potential of taurine. Clin Exp Pharmacol Physiol 31(Suppl 2):S20–S23

    PubMed  Google Scholar 

  • Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17(Suppl 1):S6

    PubMed  Google Scholar 

  • Yu SS, Wang M, Li XM, Chen WH, Chen JT, Wang HL, Ruan DY (2007) Influences of different developmental periods of taurine supplements on synaptic plasticity in hippocampal CA1 area of rats following prenatal and perinatal lead exposure. BMC Dev Biol 7:51

    PubMed  PubMed Central  Google Scholar 

  • Zhu DN, Moriguchi A, Mikami H, Higaki J, Ogihara T (1998) Central amino acids mediate cardiovascular response to angiotensin II in the rat. Brain Res Bull 45:189–197

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand and by the USA National Institutes of Health (NIH) grant AT 00477 (JMW).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanya Roysommuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roysommuti, S., Wyss, J.M. Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 46, 57–72 (2014). https://doi.org/10.1007/s00726-012-1417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1417-5

Keywords

Navigation