Skip to main content

Advertisement

Log in

Taurine and central nervous system disorders

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the present era, investigators seek to find therapeutic interventions that are multifaceted in their mode of action. Such targets provide the most advantageous routes for addressing the multiplicity of pathophysiological avenues that lead to neuronal dysfunction and death observed in neurological disorders and neurodegenerative diseases. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions in the central nervous system. In this review, we describe the mode of action of taurine and its clinical application in the neurological diseases: Alzheimer’s disease, Parkinson’s disease and Huntington’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42:733–738

    CAS  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    CAS  PubMed  Google Scholar 

  • Albrecht J, Schousboe A (2005) Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res 30:1615–1621

    CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher ME (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    CAS  PubMed  Google Scholar 

  • Alom J, Mahy JN, Brandi N, Tolosa E (1991) Cerebrospinal fluid taurine in Alzheimer’s disease. Ann Neurol 30:735

    CAS  PubMed  Google Scholar 

  • Alzheimer’s disease Education and Referral Center Web site. Alzheimer’s disease-unraveling the mystery. http://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-unraveling-mystery/preface

  • Alzheimer A (1907) A characteristic disease of the cerebral cortex. In: Bick K, Amaducci L, Pepeu G (eds) The early story of Alzheimer’s disease. Liviana Press, Padova, pp 1–3

    Google Scholar 

  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    CAS  PubMed  Google Scholar 

  • Arai H, Kobayashi K, Ichimiya Y, Kosaka K, Iizuka R (1984) A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging 5:319–321

    CAS  PubMed  Google Scholar 

  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    CAS  PubMed  Google Scholar 

  • Banerjee R, Vitvitsky V, Garg SK (2008) The undertow of sulfur metabolism on glutamatergic neurotransmission. Trends Biochem Sci 33:413–419

    CAS  PubMed  Google Scholar 

  • Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16:125–131

    CAS  PubMed  Google Scholar 

  • Bear M, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    CAS  PubMed  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292:1552–1555

    CAS  PubMed  Google Scholar 

  • Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N, Saudou F, Elalouf JM, Hirsch E, Hantraye P, Déglon N, Brouillet E (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17:1652–1663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708

    CAS  PubMed  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    CAS  PubMed  Google Scholar 

  • Bianchi L, Bolam JP, Galeffi F, Frosini M, Palmi M, Della Corte L (1996) In vivo release of taurine from rat neostriatum and substantia nigra. Adv Exp Med Biol 403:427–433

    CAS  PubMed  Google Scholar 

  • Bianchi L, Colivicchi MA, Bolam JP, Della Corte L (1998) The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 87:171–180

    CAS  PubMed  Google Scholar 

  • Birdsall TC (1998) Therapeutic applications of taurine. Altern Med Rev 3:128–136

    CAS  PubMed  Google Scholar 

  • Biron KE, Dickstein DL, Gopaul R, Jefferies WA (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheime’s disease. PLoS ONE 6:e23789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12:88–95

    PubMed  Google Scholar 

  • Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299:256–259

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm 53:127–140

    CAS  Google Scholar 

  • Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willi A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92:7105–7109

    CAS  PubMed  Google Scholar 

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554

    CAS  PubMed  Google Scholar 

  • Chan P, DeLanney LE, Irwin I, Langston JW, Di Monte D (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem 57:348–351

    CAS  PubMed  Google Scholar 

  • Chen WQ (2000) Mode of action of taurine. Ph.D Dissertation, University of Kansas

  • Chen QS, Kagan BL, Hirakura Y, Xie CW (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid b-peptides. J Neurosci Res 60:65–72

    CAS  PubMed  Google Scholar 

  • Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV, Wu JY (2001) Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 66:612–619

    CAS  PubMed  Google Scholar 

  • Chen QS, Wei WZ, Shimahara T, Xie CW (2002) Alzheimer amyloid b-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol Learn Mem 77:354–371

    CAS  PubMed  Google Scholar 

  • Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, Chen F, Zeng K (2009) Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res 1279:131–138

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 30:1010–1014

    Google Scholar 

  • Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13:1407–1420

    CAS  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharm 81:891–909

    CAS  PubMed  Google Scholar 

  • Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99:14524–14529

    CAS  PubMed  Google Scholar 

  • Davison AN, Kaczmarek LK (1971) Taurine—a possible neurotransmitter. Nature Lond 234:107–108

    CAS  PubMed  Google Scholar 

  • Dawson R Jr, Pelleymounter MA, Cullen MJ, Gollub M, Liu S (1999) An age-related decline in striatal taurine is correlated with a loss of dopaminergic markers. Brain Res Bull 48:319–324

    CAS  PubMed  Google Scholar 

  • Dawson R Jr, Baker D, Eppler B, Tang E, Shih D, Hern H, Hu M (2000) Taurine inhibition of metal-stimulated catecholamine oxidation. Neurotox Res 2:1–15

    CAS  PubMed  Google Scholar 

  • Del Olmo N, Handlera A, Alvarezb L, Bustamantec J, Martín del Ríoa R, Solísa JM (2003) Taurine-induced synaptic potentiation and the late phase of long-term potentiation are related mechanistically. Neuropharmacology 44:26–39

    PubMed  Google Scholar 

  • Della Corte L, Bolam JP, Clarke DJ, Parry DM, Smith AD (1990) Sites of [3H] taurine uptake in the rat substantia nigra in relation to the release of taurine from the striatonigral pathway. Eur J Neurosci 2:50–61

    PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    CAS  PubMed  Google Scholar 

  • Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    CAS  PubMed  Google Scholar 

  • Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21:4125–4133

    CAS  PubMed  Google Scholar 

  • Dray A, Straughan DW (1976) Synaptic mechanisms in the substantia nigra. J Pharm Pharmacol 28:400–405

    CAS  PubMed  Google Scholar 

  • El Idrissi A (2008) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328

    PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (2003) Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol 526:527–536

    PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    PubMed  Google Scholar 

  • Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073

    CAS  PubMed  Google Scholar 

  • Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC (2012) Amyloid beta peptide 1–42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 51:95–106

    CAS  PubMed  Google Scholar 

  • Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26

    CAS  PubMed  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neurol Pathol Exp Neurol 55:259–272

    CAS  Google Scholar 

  • Frey U, Huang YY, Kandel ER (1993) Effects of cAMP stimulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664

    CAS  PubMed  Google Scholar 

  • Frosini M, Sesti C, Saponara S, Ricci L, Valoti M, Palmi M, Machetti F, Sgaragli G (2003) A specific taurine recognition site in the rabbit brain is responsible for taurine effects on thermoregulation. Br J Pharmacol 139:487–494

    CAS  PubMed  Google Scholar 

  • George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372

    CAS  PubMed  Google Scholar 

  • Gerfen CF (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    CAS  PubMed  Google Scholar 

  • Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406

    CAS  PubMed  Google Scholar 

  • Geula C, Nagykery N, Nicholas A, Wu CK (2008) Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 67:309–318

    PubMed Central  PubMed  Google Scholar 

  • Gleeson RA, Trapido-Rosenthal HG, Carr WE (1987) A taurine receptor model: taurine-sensitive olfactory cells in the lobster. Adv Exp Med Biol 217:253263

    Google Scholar 

  • Goodman Y, Mattson MP (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid peptide-induced oxidative injury. Exp Neurol 128:1–12

    CAS  PubMed  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    CAS  PubMed  Google Scholar 

  • Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389

    CAS  PubMed  Google Scholar 

  • Gu Z, Liu W, Yan Z (2009) Beta-amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulindependent protein kinase II synaptic distribution. J Biol Chem 284:10639–10649

    CAS  PubMed  Google Scholar 

  • Haass C (2004) Take five-BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J 23:483–488

    CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 175:1039–1042

    Google Scholar 

  • Haass C, De Strooper B (1999) The presenilins in Alzheimer’s disease—proteolysis holds the key. Science 286:916–919

    CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    CAS  PubMed  Google Scholar 

  • Hagar HH (2004) The protective effect of taurine against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Toxicol Lett 151:335–343

    CAS  PubMed  Google Scholar 

  • Harkany T, Abrahám I, Timmerman W, Laskay G, Tóth B, Sasvári M, Kónya C, Sebens JB, Korf J, Nyakas C, Zarándi M, Soós K, Penke B, Luiten PG (2000) Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 12:2735–2745

    Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: role of prostaglandin H synthase. J Neurochem 64:919–924

    CAS  PubMed  Google Scholar 

  • Hayes KC (1985) Taurine requirement in primates. Nutr Rev 43:65–70

    CAS  PubMed  Google Scholar 

  • Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951

    CAS  PubMed  Google Scholar 

  • Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91:3270–3274

    CAS  PubMed  Google Scholar 

  • Heo JY, Park JH, Kim SJ, Seo KS, Han JS, Lee SH, Kim JM, Park JI, Park SK, Lim K, Hwang BD, Shong M, Kweon GR (2012) DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS ONE 7:e32629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P, Keller PM, Yeager M, Wang H, Shughrue P, Kinney G, Joyce JG (2006) Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry 45:15157–15167

    CAS  PubMed  Google Scholar 

  • Hernandez-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G (2010) Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 88:1673–1681

    CAS  PubMed  Google Scholar 

  • Hofer A, Gasser T (2004) New aspects of genetic contributions to Parkinson’s disease. J Mol Neurosci 24:417–424

    CAS  PubMed  Google Scholar 

  • Hoshi M, Takashima A, Murayama M, Yasutake K, Yoshida N, Ishiguro K, Hoshino T, Imahori K (1997) Nontoxic amyloid beta peptide 1–42 suppresses acetylcholine synthesis. Possible role in cholinergic dysfunction in Alzheimer’s disease. J Biol Chem 272:2038–2041

    CAS  PubMed  Google Scholar 

  • Hs.DCR Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosome. Cell 72:971–983

    Google Scholar 

  • Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    CAS  PubMed  Google Scholar 

  • Huxtable RJ (1976) Metabolism and function of taurine in the heart. In: Huxtable R, Barbeau A (eds) Taurine. Raven press, New York, pp 99–119

    Google Scholar 

  • Huxtable RJ (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 32:471–533

    CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Jacobsen JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511

    CAS  PubMed  Google Scholar 

  • Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14:115–140

    CAS  PubMed  Google Scholar 

  • Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695

    CAS  PubMed  Google Scholar 

  • Jensen PH, Islam K, Kenney J, Nielsen MS, Power J, Gai WP (2000) Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J Biol Chem 275:21500–21507

    CAS  PubMed  Google Scholar 

  • Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA 108:5819–5824

    CAS  PubMed  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    CAS  PubMed  Google Scholar 

  • Junyent F, Romero R, de Lemos L, Utrera J, Camins A, Pallàs M, Auladell C (2010) Taurine treatment inhibits CaMKII activity and modulates the presence of calbindin D28k, calretinin, and parvalbumin in the brain. J Neurosci Res 88:136–142

    CAS  PubMed  Google Scholar 

  • Kar S, Issa AM, Seto D, Auld DS, Collier B, Quirion R (1998) Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem 70:2179–2187

    CAS  PubMed  Google Scholar 

  • Kawahara M, Kuroda Y (2000) Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res Bull 53:389–397

    CAS  PubMed  Google Scholar 

  • Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci USA 96:11404–11409

    CAS  PubMed  Google Scholar 

  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA binding protein. Science 252:1708–1711

    CAS  PubMed  Google Scholar 

  • Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT (2003) Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116:3339–3346

    CAS  PubMed  Google Scholar 

  • Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA 101:15070–15075

    CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive Juvenile Parkinsonism. Nature 392:605–608

    CAS  PubMed  Google Scholar 

  • Koeppen AH (1995) The history of iron in the brain. J Neurol Sci 134:1–9

    CAS  PubMed  Google Scholar 

  • Kontro P, Oja SS (1987) Co-operativity in sodium-independent taurine binding to brain membranes in the mouse. Neuroscience 23:567–570

    CAS  PubMed  Google Scholar 

  • Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, Momoi T (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11:1505–1515

    CAS  PubMed  Google Scholar 

  • Kozlowski DJ, Chen Z, Zhuang L, Fei YJ, Navarre S, Ganapathy V (2008) Molecular characterization and expression pattern of taurine transporter in zebrafish during embryogenesis. Life Sci 82:1004–1011

    CAS  PubMed  Google Scholar 

  • Kudo Y, Akiyoshi E, Akagi H (1988) Identification of two taurine receptor subtypes on the primary afferent terminal of frog spinal cord. Br J Pharmacol 94:1051–1056

    CAS  PubMed  Google Scholar 

  • Kumar R (2009) Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys 491:1–6

    CAS  PubMed  Google Scholar 

  • Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten I, Van Der Werf K, Subramaniam V, Braeken D, Callewaert G, Bartic C, D’Hooge R, Martins IC, Rousseau F, Schymkowitz J, De Strooper B (2010) Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta 42 to Abeta 40 ratio. EMBO J 29:3408–3420

    CAS  PubMed  Google Scholar 

  • Kuriyama K (1980) Taurine as a neuromodulator. Fed Proc 39:2680–2684

    CAS  PubMed  Google Scholar 

  • Kuwert T, Lange HW, Langer K-J, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113:1405–1423

    PubMed  Google Scholar 

  • LaFontaine MA, Geddes JW, Banks A, Butterfield DA (2000) 3-Nitropropionic acid induced in vivo protein oxidation in striatal and cortical synaptosomes: insights into Huntington’s disease. Brain Res 858:356–362

    CAS  Google Scholar 

  • Landwehrmeyer GB, McNeil SM, Dure LS, Ge P, Aizawa H, Huang Q, Ambrose CM, Duyao MP, Bird ED, Bonilla E, de Young M, Avila-Gonzales AJ, Wexler NS, DiFiglia M, Gusella JF, MacDonald ME, Penney JB, Young AB, Vonsattel J-P (1995) Huntington’s disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37:218–230

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  • Lanska DJ (2000) George Huntington (1850–1916) and hereditary chorea. J Hist Neurosci 9:76–89

    CAS  PubMed  Google Scholar 

  • Leon R, Wu H, Jin Y, Wei J, Buddhala C, Prentice H, Wu JY (2009) Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res 87:1185–1194

    CAS  PubMed  Google Scholar 

  • Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid beta protein assembly in the brain impairs memory. Nature 440:352–357

    CAS  PubMed  Google Scholar 

  • Lima L, Cubillos S (1998) Taurine might be acting as a trophic factor in the retina by modulating phosphorylation of cellular proteins. J Neurosci Res 53:377–384

    CAS  PubMed  Google Scholar 

  • Lin H, Bhatia R, La R (2001) Amyloid b protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    CAS  PubMed  Google Scholar 

  • Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by B-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90:7951–7955

    CAS  PubMed  Google Scholar 

  • López-Colomé AM, Fragoso G, Salceda R (1991) Taurine receptors in membranes from retinal pigment epithelium cells in culture. Neuroscience 41:791–796

    PubMed  Google Scholar 

  • Louzada PR, Paula-Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST (2004) Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18:511–518

    CAS  PubMed  Google Scholar 

  • Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1990) 3-Nitropropionic acid: exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498

    Google Scholar 

  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    CAS  PubMed  Google Scholar 

  • Macaione S, Ruggeri P, DeLuca F, Tucci G (1974) Free amino acids in developing rat retina. J Neurochem 22:887–891

    CAS  PubMed  Google Scholar 

  • MacDermott AB, Dale BN (1987) Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids. Trend Neurosci 10:280–284

    CAS  Google Scholar 

  • Magnusson KR, Clements JR, Wu JY, Beitz AJ (1989) Colocalization of taurine and cysteine sulfinic acid decarboxylase-like immunoreactivity in the hippocampus of the rat. Synapse 4:55–69

    CAS  PubMed  Google Scholar 

  • Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Brain Res Mol Brain Res 134:18–23

    CAS  PubMed  Google Scholar 

  • Mankovskaya IN, Serebrovskaya TV, Swanson RJ, Vavilova GL, Kharlamova ON (2000) Mechanisms of taurine antihypoxic and antioxidant action. High Alt Med Biol 1:105–110

    CAS  PubMed  Google Scholar 

  • Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94

    CAS  PubMed  Google Scholar 

  • Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, Hayden MR (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 18:150–154

    CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Alford M, Tanaka S, Hansen LA (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer’s disease. J Neuropathol Exp Neuro 57:1041–1052

    CAS  Google Scholar 

  • Mattson MP (1997) Advances fuel Alzheimer’s conundrum. Nat Genet 17:254–256

    CAS  PubMed  Google Scholar 

  • Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, Hoffman JM, Kuhl DE, Lanto AB, Wapenski JA, Markham CH (1987) Reduced cerebral glucose metabolism in asymptomatic patients at risk for Huntington’s disease. New Eng J Med 316:357–362

    CAS  PubMed  Google Scholar 

  • Miao J, Zhang J, Zheng L, Yu X, Zhu W, Zou S (2012) Taurine attenuates Streptococcus uberis-induced mastitis in rats by increasing T regulatory cells. Amino Acids 42:2417–2428

    CAS  PubMed  Google Scholar 

  • Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P (2001) Bcl-2 Prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 276:18361–18374

    CAS  PubMed  Google Scholar 

  • Milakovic T, Johnson GV (2005) Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J Biol Chem 280:30773–30782

    CAS  PubMed  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and Bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    CAS  PubMed  Google Scholar 

  • Molina JA, Jiménez-Jiménez FJ, Gomez P, Vargas C, Navarro JA, Ortí-Pareja M, Gasalla T, Benito-León J, Bermejo F, Arenas J (1997) Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease. J Neurol Sci 150:123–127

    CAS  PubMed  Google Scholar 

  • Morales I, Dopico JG, Sabate M, Gonzalez-Hernandez T, Rodriguez M (2007) Substantia nigra osmoregulation: taurine and ATP involvement. Am J Physiol Cell Physiol 292:C1934–C1941

    CAS  PubMed  Google Scholar 

  • Moran J, Salazar P, Pasantes-Morales H (1988) Effect of tocopherol and taurine on membrane fluidity of retinal rod outer segments. Exp Eye Res 45:769–776

    Google Scholar 

  • Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    PubMed  Google Scholar 

  • Navneet AK, Appukuttan TA, Pandey M, Mohanakumar KP (2008) Taurine fails to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion in mice. Amino Acids 35:457–461

    CAS  PubMed  Google Scholar 

  • Neumann M, Tolnay M, Mackenzie IR (2009) The molecular basis of frontotemporal dementia. Exp Rev Mol Med. doi:10.1017/S1462399409001136

    Google Scholar 

  • Nicklas WJ, Yougster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729

    CAS  PubMed  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    CAS  PubMed  Google Scholar 

  • O’Byrne MB, Tipton KF (2000) Taurine-induced attenuation of MPP1 neurotoxicity in vitro: a possible role for the GABAA subclass of GABA receptors. Neurochem 74:2087–2093

    Google Scholar 

  • Oddo S, LaFerla FM (2006) The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J Physiol 99:172–179

    CAS  Google Scholar 

  • Oja SS, Lahdesmaki P (1974) Is taurine an inhibitory neurotransmitter? Med Biol 52:138–143

    CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P (2007) Pharmacology of taurine. Proc West Pharmacol 50:8–15

    CAS  Google Scholar 

  • Oja SS, Ahtee L, Kontro P, Paasonen MK (1985) Taurine biological actions and clinical perspectives. Alan R Liss Inc, New York

    Google Scholar 

  • Okamoto K, Kimura H, Sakai Y (1983) Taurine-induced increase of the Cl conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res 259:319–323

    CAS  PubMed  Google Scholar 

  • Oliveira JM (2010) Mitochondrial bioenergetics and dynamics in Huntington’s disease: tripartite synapses and selective striatal degeneration. J Bioenerg Biomembr 42:227–234

    CAS  PubMed  Google Scholar 

  • Palkovits M, Elekes I, Lang T, Patthy A (1986) Taurine levels in discrete brain nuclei of rats. J Neurochem 47:1333–1335

    CAS  PubMed  Google Scholar 

  • Pan C, Giraldo GS, Prentice H, Wu JY (2010) Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress. J Biomed Sci 1:S17

    Google Scholar 

  • Pan C, Prentice H, Price AL, Wu JY (2011) Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture. Amino Acid 43:1141–1146

    Google Scholar 

  • Parker WD, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    PubMed  Google Scholar 

  • Paula-Lima AC, De Felice FG, Brito-Moreira J, Ferreira ST (2005) Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of beta-amyloid in rat hippocampal and cortical neurons. Neuropharmacology 49:1140–1148

    CAS  PubMed  Google Scholar 

  • Pedersen WA, Kloczewiak MA, Blusztajn JK (1996) Amyloid beta-protein reduces acetyl-choline synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc Natl Acad Sci USA 93:8068–8071

    CAS  PubMed  Google Scholar 

  • Philibert RA, Rogers KL, Dutton GR (1989) Stimulus-coupled taurine efflux from cerebellar neuronal cultures: on the roles of Ca++ and Na+. J Neurosci Res 22:167–171

    CAS  PubMed  Google Scholar 

  • Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768

    CAS  PubMed  Google Scholar 

  • Procter AW (2000) Abnormalities in non-cholinergic neurotransmitter systems in Alzheimer’s disease. In: O’Brien J, Ames D, Burns A (eds) Dementia, 2nd edn. Edward Arnold, Oxford, pp 433–442

    Google Scholar 

  • Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653–662

    CAS  PubMed  Google Scholar 

  • Reichelt KL, Edminson PD (1974) Biogenic amine specificity of cortical peptide synthesis in monkey brain. FEBS Lett 47:185–189

    CAS  PubMed  Google Scholar 

  • Reijonen S, Putkonen N, Nørremølle A, Lindholm D, Korhonen L (2008) Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 14:950–960

    Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons Huntington disease. Proc Natl Acad Sci USA 85:5733–5737

    CAS  PubMed  Google Scholar 

  • Richfield EK, Maguire-Zeiss KA, Cox C, Gilmore J, Voorn P (1995) Reduced expression of preproenkephalin in striatal neurons from Huntington’s disease patients. Ann Neurol 37:335–343

    CAS  PubMed  Google Scholar 

  • Rivas-arancibia S, Alba I, Rodríguez AI, Tanja Zigova T, Willing AE, Brown WD, Cahill DW, Sanberg PR (2001) Taurine increases rat survival and reduces striatal damage caused by 3-nitropropionic acid. Int J Neurosci 108:55–67

    CAS  PubMed  Google Scholar 

  • Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M, Almeida OF (2005) Soluble beta-amyloid 1–40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 25:11061–11070

    CAS  PubMed  Google Scholar 

  • Ruotsalainen M, Ahtee L (1996) Intrastriatal taurine increases striatal extracellular dopamine in a tetrodotoxin-sensitive manner in rats. Neurosci Let 212:175–178

    CAS  Google Scholar 

  • Santa-Maria I, Hernandez F, Moreno FJ, Avial J (2007) Taurine, an inducer of tau polymerization and a weak inhibitor for amyloid-beta-peptide aggregation. Neurosci Lett 429:91–94

    CAS  PubMed  Google Scholar 

  • Saransaari P, Oja SS (2000) Taurine and neural cell damage. Amino Acids 19:509–526

    CAS  PubMed  Google Scholar 

  • Schaffer SW, Azuma J, Matura JD (1995) Mechanisms underlying taurine-mediated alterations in membrane function. Amino Acids 18:231–246

    Google Scholar 

  • Schaffer SW, Takahashi K, Azuma J (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    CAS  PubMed  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99

    CAS  PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644

    CAS  PubMed  Google Scholar 

  • Schulz S, Siemer H, Krug M, Höllt V (1999) Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. J Neurosci 19:5683–5692

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    CAS  PubMed  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induces reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    CAS  PubMed  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimo Y, Wichmann T (2009) Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatum. Eur J Neurosci 29:104–113

    PubMed Central  PubMed  Google Scholar 

  • Size C, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ (2001) N-Methyl-d-aspartate receptor subunit. Proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci 182:151–159

    Google Scholar 

  • Smith Y, Charara A, Parent A (1996) Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. J Comp Neurol 364:231–253

    CAS  PubMed  Google Scholar 

  • Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM, Ross CA (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811

    CAS  PubMed  Google Scholar 

  • Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M (1998) Alpha synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    CAS  PubMed  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    CAS  PubMed  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    CAS  PubMed  Google Scholar 

  • Su JH, Anderson AJ, Cummings B, Cotman CW (1994) Immunocytochemical evidence for apoptosis in Alzheimer’s disease. NeuroReport 5:2529–2533

    CAS  PubMed  Google Scholar 

  • Sulaiman SA, Suliman FE, Barghouthi S (2003) Kinetic studies on the inhibition of GABA-T by gamma-vinyl GABA and taurine. Enzyme Inhib Med Chem 18:297–301

    CAS  Google Scholar 

  • Sun M, Gu Y, Zhao Y, Xu C (2011) Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids 40:1419–1429

    CAS  PubMed  Google Scholar 

  • Sun M, Zhao Y, Gu Y, Xu C (2012) Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-kappaB. Amino Acids 42:1735–1747

    CAS  PubMed  Google Scholar 

  • Sung DY, Walthall WW, Derby CD (1996) Identification and partial characterization of putative taurine receptor proteins from the olfactory organ of the spiny lobster. Comp Biochem Physiol B Biochem Mol Biol 115:19–26

    CAS  PubMed  Google Scholar 

  • Tadros MG, Khalifa AE, Abdel-Naim AB, Arafa HM (2005) Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington’s disease phenotype. Pharmacol Biochem Behav 82:574–582

    CAS  PubMed  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287:C949–C953

    CAS  PubMed  Google Scholar 

  • Takuma K, Yan SS, Stern DM, Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J Pharmacol Sci 97:312–316

    CAS  PubMed  Google Scholar 

  • Tang XW, Deupree DL, Sun Y, Wu JY (1996) Biphasic effect of taurine on excitatory amino acid-induced neurotoxicity. In: Huxtable RJ, Azuma J, Kuriyama K, Nakagawa M, Baba A (eds) Taurine 2: basic and clinical aspects in advances in experimental medicine and biology, vol 43. Plenum Press, New York, pp 499–505

    Google Scholar 

  • Teaktong T, Graham AJ, Court JA, Perry RH, Jaros E, Johnson M, Hall R, Perry EK (2004) Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J Neurol Sci 225:39–49

    CAS  PubMed  Google Scholar 

  • Texidó L, Martín-Satué M, Alberdi E, Solsona C, Matute C (2011) Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium 49:184–190

    PubMed  Google Scholar 

  • Trushina E, Dyer RB, Badger JD, Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin V, McPherson PS, Mandavilli BS, Van Houten B, Zeitlin S, McNiven M, Aebersold R, Hayden M, Parisi JE, Seeberg E, Dragatsis I, Doyle K, Bender A, Chacko C, McMurray CT (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24:8195–8209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaucher E, Aumont N, Pearson D, Rowe W, Poirier J, Kar S (2001) Amyloid peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and unimpaired rats. J Chem Neuroanat 21:323–329

    CAS  PubMed  Google Scholar 

  • Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL (2004) Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine containing proteins. Mol Cell 14:95–104

    CAS  PubMed  Google Scholar 

  • Verner A, Craig S, McGuire W (2007) Effect of taurine supplementation on growth and development in preterm or low birth weight infants. Cochrane Database Syst Rev 17:CD006072

    Google Scholar 

  • Vohra BP, Hui X (2001) Taurine protects against carbon tetrachloride toxicity in the cultured neurons and in vivo. Arch Physiol Biochem 109:90–94

    CAS  PubMed  Google Scholar 

  • Wan FS, Li GH, Zhang J, Yu LH, Zhao XM (2008) Protective effects of taurine on myocardial mitochondria and their enzyme activities in rate with severe burn. Zhonghua Shao Shang Za Zhi 24:171–174

    CAS  PubMed  Google Scholar 

  • Warskulat U, Flögel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW, Molojavyi A, Heller-Stilb B, Schrader J, Häussinger D (2004) Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J 18:577–579

    Google Scholar 

  • Wertkin AM, Turner RS, Pleasure SJ, Golde TE, Younkin SG, Trojanowski JQ, Lee VM (1993) Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular β-amyloid or A4 peptides. Proc Natl Acad Sci USA 90:9513–9517

    CAS  PubMed  Google Scholar 

  • Winder DG, Mansuy LM, Osman M, Moallem TM, Kandel ER (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long term potentiation suppressed by calcineurin. Cell 92:25–37

    CAS  PubMed  Google Scholar 

  • Wogulis M, Wright S, Cunningham D, Chilcote T, Powell K, Rydel RE (2005) Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J Neurosci 25:1071–1080

    CAS  PubMed  Google Scholar 

  • Wu JY (1982) Purification and characterization of cysteic/cysteine sulfinic acids decarboxylase and l-glutamate decarboxylase in bovine brain. Proc Natl Acad Sci USA 79:4270–4274

    CAS  PubMed  Google Scholar 

  • Wu JY, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17:S1

    PubMed  Google Scholar 

  • Wu JY, Moss LG, Chen MS (1979) Tissue and regional distribution of cysteic acid decarboxylase in bovine brain. A new assay method. Neurochem Res 4:201–212

    CAS  PubMed  Google Scholar 

  • Wu JY, Johansen FF, Lin CT, Liu JW (1987) Taurine system in the normal and ischemic rat hippocampus. Adv Exp Med Biol 217:265–274

    CAS  PubMed  Google Scholar 

  • Wu JY, Liao C, Lin CJ, Lee YH, Ho JY, Wu HT (1990) Taurine receptor in the mammalian brain. Prog Clin Biol Res 351:147–156

    CAS  PubMed  Google Scholar 

  • Wu JY, Tang XW, Tsai WH (1992a) Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol 315:263–268

    CAS  PubMed  Google Scholar 

  • Wu QD, Wang JH, Fennessy F, Redmond HP, Bouchier-Hayes HD, Wu JY, Tang XW, Tsai WH (1992b) Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol 315:263–268

    CAS  PubMed  Google Scholar 

  • Wu JY, Chen W, Tang XW, Jin H, Foos T, Schloss JV, Davis K, Faiman MD, Hsu CC (2000) Mode of action of taurine and regulation dynamics of its synthesis in the CNS. Adv Exp Med Biol 483:35–44

    CAS  PubMed  Google Scholar 

  • Wu H, Jin Y, Wei J, Jin H, Sha D, Wu JY (2005) Mode of action of taurine as a neuroprotector. Brain Res 1038:123–131

    CAS  PubMed  Google Scholar 

  • Wu J, Kohno T, Georgiev SK, Ikoma M, Ishii H, Petrenko AB, Baba H (2008) Taurine activates glycine and gamma-aminobutyric acid A receptors in rat substantia gelatinosa neurons. Neuro Report 19:333–337

    CAS  Google Scholar 

  • Wu JY, Wu H, Jin Y, Wei J, Sha D, Howarad P, Lee HH, Lin CH, Lee YH, Yang LL (2009) Mechanism of neuroprotective function of taurine. Adv Exp Med Biol 643:169–179

    CAS  PubMed  Google Scholar 

  • Xu H, Greengard P, Gandy S (1995) Regulated formation of Golgi secretory vesicles containing Alzheimer β-amyloid precursor protein. J Biol Chem 270:23243–23245

    CAS  PubMed  Google Scholar 

  • Yan SD, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, Collison K, Zhu A, Stern E, Saido T, Tohyama M, Ogawa S, Roher A, Stern D (1997) An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389:689–695

    CAS  PubMed  Google Scholar 

  • Ye G, Tse AC, Yung W (1997) Taurine inhibits rat substantia nigra pars reticulata neurons by activation of GABA- and glycine-linked chloride conductance. Brain Res 749:175–179

    CAS  PubMed  Google Scholar 

  • Youdim MB, Ben Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl 126:47–54

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    CAS  PubMed  Google Scholar 

  • Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid beta peptide-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529

    CAS  PubMed  Google Scholar 

  • Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron 44:601–607

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the James and Esther King Biomedical Research Program, Florida Department of Health (grant #: 09KW-11), and the Schmidt Foundation, Charles E. Schmidt College of Medicine, Florida Atlantic University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Howard Prentice or Jang-Yen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzie, J., Pan, C., Prentice, H. et al. Taurine and central nervous system disorders. Amino Acids 46, 31–46 (2014). https://doi.org/10.1007/s00726-012-1382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1382-z

Keywords

Navigation