Skip to main content
Log in

Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Multimerization of peptides can improve the binding characteristics of the tracer by increasing local ligand concentration and decreasing dissociation kinetics. In this study, a new bombesin homodimer was developed based on an ε-aminocaproic acid-bombesin(7–14) (Aca-bombesin(7–14)) fragment, which has been studied for targeting the gastrin-releasing peptide receptor (GRPR) in prostate cancer. The bombesin homodimer was conjugated to 6-hydrazinopyridine-3-carboxylic acid (HYNIC) and labeled with 99mTc for SPECT imaging. The in vitro binding affinity to GRPR, cell uptake, internalization and efflux kinetics of the radiolabeled bombesin dimer were investigated in the GRPR-expressing human prostate cancer cell line PC-3. Biodistribution and the GRPR-targeting potential were evaluated in PC-3 tumor-bearing athymic nude mice. When compared with the bombesin monomer, the binding affinity of the bombesin dimer is about ten times lower. However, the 99mTc labeled bombesin dimer showed a three times higher cellular uptake at 4 h after incubation, but similar internalization and efflux characters in vitro. Tumor uptake and in vivo pharmacokinetics in PC-3 tumor-bearing mice were comparable. The tumor was visible on the dynamic images in the first hour and could be clearly distinguished from non-targeted tissues on the static images after 4 h. The GRPR-targeting ability of the 99mTc labeled bombesin dimer was proven in vitro and in vivo. This bombesin homodimer provides a good starting point for further studies on enhancing the tumor targeting activity of bombesin multimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ait-Mohand S, Fournier P, Dumulon-Perreault V, Kiefer GE, Jurek P, Ferreira CL, Benard F, Guerin B (2011) Evaluation of 64Cu-labeled bifunctional chelate–bombesin conjugates. Bioconjug Chem 22(8):1729–1735. doi:10.1021/bc2002665

    Article  PubMed  CAS  Google Scholar 

  • Ananias HJ, Yu Z, Dierckx RA, van der Wiele C, Helfrich W, Wang F, Yan Y, Chen X, de Jong IJ, Elsinga PH (2011) (99m)technetium-HYNIC(tricine/TPPTS)-Aca-bombesin(7–14) as a targeted imaging agent with microSPECT in a PC-3 prostate cancer xenograft model. Mol Pharm 8(4):1165–1173. doi:10.1021/mp200014h

    Article  PubMed  CAS  Google Scholar 

  • Aprikian AG, Cordon-Cardo C, Fair WR, Reuter VE (1993) Characterization of neuroendocrine differentiation in human benign prostate and prostatic adenocarcinoma. Cancer 71(12):3952–3965

    Article  PubMed  CAS  Google Scholar 

  • Chang E, Liu S, Gowrishankar G, Yaghoubi S, Wedgeworth JP, Chin F, Berndorff D, Gekeler V, Gambhir SS, Cheng Z (2011) Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts. Eur J Nucl Med Mol Imaging 38(4):722–730. doi:10.1007/s00259-010-1672-1

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf I, Kruijtzer JA, Liu S, Soede AC, Oyen WJ, Corstens FH, Liskamp RM, Boerman OC (2007) Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 34(2):267–273. doi:10.1007/s00259-006-0180-9

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf I, Yim CB, Franssen GM, Schuit RC, Luurtsema G, Liu S, Oyen WJ, Boerman OC (2011) PET imaging of alphavbeta integrin expression in tumours with Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38(1):128–137. doi:10.1007/s00259-010-1615-x

    Article  PubMed  CAS  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi:10.1016/j.ejca.2008.10.026

    Article  PubMed  CAS  Google Scholar 

  • Erspamer V, Erpamer GF, Inselvini M (1970) Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 22(11):875–876

    Article  PubMed  CAS  Google Scholar 

  • Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592. doi:10.1093/annonc/mdl498

    Article  PubMed  CAS  Google Scholar 

  • Handl HL, Vagner J, Yamamura HI, Hruby VJ, Gillies RJ (2004) Lanthanide-based time-resolved fluorescence of in cyto ligand–receptor interactions. Anal Biochem 330(2):242–250. doi:10.1016/j.ab.2004.04.012

    Article  PubMed  CAS  Google Scholar 

  • Harris TD, Sworin M, Williams N, Rajopadhye M, Damphousse PR, Glowacka D, Poirier MJ, Yu K (1999) Synthesis of stable hydrazones of a hydrazinonicotinyl-modified peptide for the preparation of 99m Tc-labeled radiopharmaceuticals. Bioconjug Chem 10(5):808–814 pii:bc9900237

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687 pii: S0092867402009716

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA Cancer J Clin 58(2):71–96. doi:10.3322/CA.2007.0010

    Article  PubMed  Google Scholar 

  • Joosten JA, Loimaranta V, Appeldoorn CC, Haataja S, El Maate FA, Liskamp RM, Finne J, Pieters RJ (2004) Inhibition of Streptococcus suis adhesion by dendritic galabiose compounds at low nanomolar concentration. J Med Chem 47(26):6499–6508. doi:10.1021/jm049476+

    Article  PubMed  CAS  Google Scholar 

  • Kramer RH, Karpen JW (1998) Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395(6703):710–713. doi:10.1038/27227

    Article  PubMed  CAS  Google Scholar 

  • Li ZB, Wu Z, Chen K, Ryu EK, Chen X (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49(3):453–461. doi:10.2967/jnumed.107.048009

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Kim YS, Hsieh WY, Gupta Sreerama S (2008) Coligand effects on the solution stability, biodistribution and metabolism of the (99m)Tc-labeled cyclic RGDfK tetramer. Nucl Med Biol 35(1):111–121. doi:10.1016/j.nucmedbio.2007.08.006

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li ZB, Cao Q, Liu S, Wang F, Chen X (2009a) Small-animal PET of tumors with (64)Cu-labeled RGD–bombesin heterodimer. J Nucl Med 50(7):1168–1177. doi:10.2967/jnumed.108.061739

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Niu G, Wang F, Chen X (2009b) (68)Ga-labeled NOTA-RGD–BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36(9):1483–1494. doi:10.1007/s00259-009-1123-z

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan Y, Chin FT, Wang F, Chen X (2009c) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD–bombesin heterodimer 18F-FB-PEG3-Glu-RGD–BBN. J Med Chem 52(2):425–432. doi:10.1021/jm801285t

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan Y, Liu S, Wang F, Chen X (2009d) (18)F, (64)Cu, and (68)Ga labeled RGD–bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug Chem 20(5):1016–1025. doi:10.1021/bc9000245

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Shi J, Jia B, Yu Z, Liu Y, Zhao H, Li F, Tian J, Chen X, Liu S, Wang F (2011) Two Y-labeled multimeric RGD peptides RGD4 and 3PRGD2 for integrin targeted radionuclide therapy. Mol Pharm 8(2):591–599. doi:10.1021/mp100403y

    Article  PubMed  CAS  Google Scholar 

  • McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90(1):227–233 pii:0006-291X(79)91614-0

    Article  PubMed  CAS  Google Scholar 

  • Mulder A, Huskens J, Reinhoudt DN (2004) Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem 2(23):3409–3424. doi:10.1039/b413971b

    Article  PubMed  CAS  Google Scholar 

  • Price J, Penman E, Wass JA, Rees LH (1984) Bombesin-like immunoreactivity in human gastrointestinal tract. Regul Pept 9(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  • Schroeder RP, Muller C, Reneman S, Melis ML, Breeman WA, de Blois E, Bangma CH, Krenning EP, van Weerden WM, de Jong M (2010) A standardised study to compare prostate cancer targeting efficacy of five radiolabelled bombesin analogues. Eur J Nucl Med Mol Imaging 37(7):1386–1396. doi:10.1007/s00259-010-1388-2

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Jia B, Liu Z, Yang Z, Yu Z, Chen K, Chen X, Liu S, Wang F (2008) 99mTc-labeled bombesin(7–14)NH2 with favorable properties for SPECT imaging of colon cancer. Bioconjug Chem 19(6):1170–1178. doi:10.1021/bc700471z

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2009) Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjug Chem 20(4):750–759. doi:10.1021/bc800455p

    Article  PubMed  CAS  Google Scholar 

  • Spindel ER, Chin WW, Price J, Rees LH, Besser GM, Habener JF (1984) Cloning and characterization of cDNAs encoding human gastrin-releasing peptide. Proc Natl Acad Sci USA 81(18):5699–5703

    Article  PubMed  CAS  Google Scholar 

  • Track NS, Cutz E (1982) Bombesin-like immunoreactivity in developing human lung. Life Sci 30(18):1553–1556

    Article  PubMed  CAS  Google Scholar 

  • Vance D, Shah M, Joshi A, Kane RS (2008) Polyvalency: a promising strategy for drug design. Biotechnol Bioeng 101(3):429–434. doi:10.1002/bit.22056

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Wang J, Hampton LL, Weber HC (2001) The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene 264(1):95–103. doi:10.1016/S0378-1119(00)00596-5

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, Xing L, Chen X (2006) 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 47(3):492–501

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by a financial contribution from CTMM, project PCMM, project number 03O-203. We thank Chao Wu for technical assistance on microSPECT images reconstruction and D.F. Samplonius for technical assistance on cell culturing, and J. W. A. Sijbesma for assisting with animal experiments. All animal experiments were approved by the local animal welfare committee in accordance with the Dutch legislation and carried out in accordance with their guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Carlucci, G., Ananias, H.J.K. et al. Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer. Amino Acids 44, 543–553 (2013). https://doi.org/10.1007/s00726-012-1369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1369-9

Keywords

Navigation