Skip to main content

Advertisement

Log in

A bursal pentapeptide (BPP-I), a novel bursal-derived peptide, exhibits antiproliferation of tumor cell and immunomodulator activity

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The bursa of Fabricius (BF) is the central humoral immune organ unique to birds. Here, we isolated a novel bursal pentapeptide I (BPP-I), LGPGP, from BF. BPP-I could play inhibition effect on MCF-7 but not on CEF or Vero cell proliferation in vitro, and enhance antitumor factor p53 protein expression. Also, BPP-I stimulated antibody production in a dose-dependent manner in hybridoma cell. Furthermore, BPP-I could induce various immune responses in mice immunization experiments, including increase antibody production and cytokines IL-4 and IFN-γ level, and induce T-cell immunophenotyping. These results suggest that BPP-I is a potential immunomodulator of antitumor and immunity. The study could provide some novel insights on the probable candidate reagent for the antitumor and immune improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ann B, Douglas GG, Gideon G (1976) Lymphocyte-differentiating hormone of bursa of Fabricius. Science 193:319–321

    Article  Google Scholar 

  • Arakawa H, Buerstedde JM (2004) Immunoglobulin gene conversion: insights from bursal B cells and the DT40 cell line. Dev Dyn 229:458–464

    Article  PubMed  CAS  Google Scholar 

  • Avantika V, Kashi NP, Aloukick KS, Kishan KN, Rakesh KG, Vimal KP (2010) Evaluation of the MTT lymphocyte proliferation assay for the diagnosis of neurocysticercosis. J Microbiol Methods 81(2):175–178

    Article  Google Scholar 

  • Baba T, Kita M (1977) Effect of extracts of the bursa of Fabricius on IgG antibody production in hormonally bursectomized chickens. Immunology 32:271–274

    PubMed  CAS  Google Scholar 

  • Bou Ghanem EN, Nelson CC, D’Orazio SE (2011) T cell-intrinsic factors contribute to the differential ability of CD8+ T cells to rapidly secrete IFN-γ in the absence of antigen. J Immunol 186(3):1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Bungener L, Geeraedts F, Ter Veer W, Medema J, Wilschut J, Huckriede A (2008) Alum boosts TH2-type antibody responses to whole-inactivated virus influenza vaccine in mice but does not confer superior protection. Vaccine 26(19):2350–2359

    Article  PubMed  CAS  Google Scholar 

  • Byrd JA, Dean CE, Hayes TK, Wright MS, Hargis BM (1993) Detection and partial characterization of an anti-steroidogenic peptide from the humoral immune system of the chicken. Life Sci 52:1195–1207

    Article  PubMed  CAS  Google Scholar 

  • Caldwell DJ, Dean CE, McElroy AP, Caldwell DY, Manning JG, Hargis BM (1999) Bursal anti-steroidogenic peptide (BASP): modulation of mitogen-stimulated bursallymphocyte DNA synthesis. Comp Biochem Physiol A Mol Integr Physiol 123(4):385–391

    Article  PubMed  CAS  Google Scholar 

  • Caldwell RB, Kierzek AM, Arakawa H, Bezzubov Y, Zaim J, Fiedler P, Kutter S, Blagodatski A, Kostovska D, Koter M, Plachy J, Carninci P, Hayashizaki Y, Buerstedde JM (2005) Full-length cDNAs from chicken bursal lymphocytes to facilitate gene function analysis. Genome Biol 6(1):R6

    Article  PubMed  Google Scholar 

  • Davison F, Kaspers B, Schat KA (eds) (2008) Avian Immunology, Elsevier/Academic Press, New York

  • Feng XL, Su XD, Wang FQ, Wei JC, Wang FJ, Cao RB, Zhou B, Mao X, Zheng QS, Chen PY (2010) Isolation and potential immunological characterization of TPSGLVY, a novel bursal septpeptide isolated from the bursa of Fabricius. Peptides 31:1562–1568

    Article  PubMed  CAS  Google Scholar 

  • Gajewski TF, Chesney J, Curriel TJ (2009) Emerging strategies in regulatory T-cell immunotherapies. Clin Adv Hematol Oncol 7(1):1–10 (quiz 11–12)

    PubMed  Google Scholar 

  • Jones HP, Wang YC, Aldridge B, Weiss JM (2008) Lung and splenic B cells facilitate diverse effects on in vitro measures of antitumor immune responses. Cancer Immun 8:4

    PubMed  Google Scholar 

  • Kim E, Deppert W (2003) The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol 81(3):141–150

    Article  PubMed  CAS  Google Scholar 

  • Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83(3):249–289

    Article  PubMed  CAS  Google Scholar 

  • Li DY, Geng ZR, Zhu HF, Wang C, Miao DN, Chen PY (2010) Immunomodulatory activities of a new pentapeptide (Bursopentin) from the chicken bursa of Fabricius. Amino Acids. doi:10.1007/s00726-010-0663-7

  • Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467(7315):562–566

    Article  PubMed  CAS  Google Scholar 

  • May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18(53):7621–7636

    Article  PubMed  CAS  Google Scholar 

  • Nicolini A, Carpi A (2009) Immune manipulation of advanced breast cancer: an interpretative model of the relationship between immune system and tumor cell biology. Med Res Rev 29(3):436–471

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo M, Kai R, Furuno N, Sekiguchi T, Sekiguchi M, Hayashida H, Kuma K, Miyata T, Fukushige S, Murotsu T et al (1987) Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev 1(6):585–593

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Shen Y, Li X, Liu Q, Ma Z (2008) Polyclonal antibody to porcine p53 protein: a new tool for studying the p53 pathway in a porcine model. Biochem Biophys Res Commun 377(1):151–155

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe MJH (2006) Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev Comp Immunol 30:101–118

    Article  PubMed  CAS  Google Scholar 

  • Seder RA, Paul WE, Davis MM, Fazekas de St Groth B (1992) The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4 + T cells from T cell receptor transgenic mice. J Exp Med 176(4):1091–1098

    Google Scholar 

  • Shen Y, Wang X, Guo L, Qiu Y, Li X, Yu H, Xiang H, Tong G, Ma Z (2009) Influenza A virus induces p53 accumulation in a biphasic pattern. Biochem Biophys Res Commun 382(2):331–335

    Article  PubMed  CAS  Google Scholar 

  • Singh VK, Biswas S, Mathur KB, Haq W, Garg SK, Agarwal SS (1998) Thymopentin and splenopentin as immunomodulators. Immunol Res 17:345–368

    Article  PubMed  CAS  Google Scholar 

  • Walton MI, Wilson SC, Hardcastle IR, Mirza AR, Workman P (2005) An evaluation of the ability of pifithrin-alpha and -beta to inhibit p53 function in two wild type p53 human tumor cell lines. Mol Cancer Ther 4(9):1369–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Agriculture Special Research Project for Non-Profit Trades, Ministry of Agriculture (No. 200803020). Also, we thank Elsevier Language Editing Services (https://languageediting.elsevier.com/) for professional language editing service in the preparation of this manuscript.

Conflict of interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X.L., Liu, Q.T., Cao, R.B. et al. A bursal pentapeptide (BPP-I), a novel bursal-derived peptide, exhibits antiproliferation of tumor cell and immunomodulator activity. Amino Acids 42, 2215–2222 (2012). https://doi.org/10.1007/s00726-011-0961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0961-8

Keywords

Navigation