Skip to main content
Log in

Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The primary function assigned to the sodium-dependent glutamate transporters, also known as excitatory amino acid transporters (EAATs), is to maintain the extracellular glutamate concentration in the low micromolar range, allowing glutamate to be used as a signaling molecule in the brain and preventing its cytotoxic effects. However, glutamate and cyst(e)ine, that is also a substrate of EAATs, are also important metabolites used for instance in the synthesis of the main antioxidant glutathione. This review describes the evidence suggesting that EAATs, by providing glutathione precursors, are crucial to prevent oxidative death in particular cells of the nervous system while being dispensable in others. This differential importance may depend on the way antioxidant defenses are maintained in each cell type and on the metabolic fate of transported substrates, both being probably controlled by EAAT interacting proteins. As oxidative stress invariably contributes to various forms of cell death, a better understanding of how antioxidant defenses are maintained in particular brain cells will probably help to develop protective strategies in degenerative insults specifically affecting these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agulhon C, Petravicz J, McMullen AB et al (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894:131–140

    Article  PubMed  CAS  Google Scholar 

  • Aoyama K, Suh SW, Hamby AM et al (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126

    Article  PubMed  CAS  Google Scholar 

  • Aoyama K, Watabe M, Nakaki T (2011) Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18. Amino Acids (this issue)

  • Araque A, Parpura V, Sanzgiri RP et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  • Araque A, Li N, Doyle RT et al (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673

    PubMed  CAS  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI et al (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    PubMed  CAS  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP et al (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  PubMed  CAS  Google Scholar 

  • Banjac A, Perisic T, Sato H et al (2008) The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27:1618–1628

    Article  PubMed  CAS  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263

    PubMed  CAS  Google Scholar 

  • Beart PM, O’Shea RD (2007) Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr et al (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  PubMed  CAS  Google Scholar 

  • Bender AS, Reichelt W, Norenberg MD (2000) Characterization of cystine uptake in cultured astrocytes. Neurochem Int 37:269–276

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Fagni L, Dumuis A et al (2004) GPCR interacting proteins (GIP). Pharmacol Ther 103:203–221

    Article  PubMed  CAS  Google Scholar 

  • Boudker O, Ryan RM, Yernool D et al (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ, Esslinger CS (2005) The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacol Ther 107:271–285

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ, Stanley MS, Anderson MW et al (1991) Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2, 4-dicarboxylate diastereomer. J Med Chem 34:717–725

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  PubMed  CAS  Google Scholar 

  • Brocke L, Bendahan A, Grunewald M et al (2002) Proximity of two oppositely oriented reentrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. J Biol Chem 277:3985–3992

    Article  PubMed  CAS  Google Scholar 

  • Bruijn LI, Becher MW, Lee MK et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    Article  PubMed  CAS  Google Scholar 

  • Buddhala C, Hsu CC, Wu JY (2009) A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int 55:9–12

    Article  PubMed  CAS  Google Scholar 

  • Charles AC, Merrill JE, Dirksen ER et al (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Aoki C, Mahadomrongkul V et al (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22:2142–2152

    PubMed  CAS  Google Scholar 

  • Chen W, Mahadomrongkul V, Berger UV et al (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24:1136–1148

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55:2091–2097

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann NY Acad Sci 1003:12–21

    Article  PubMed  CAS  Google Scholar 

  • Conrad M, Sato H (2011) The oxidative stress-inducible cystine/glutamate antiporter, system x c : cystine supplier and beyond. Amino Acids (this issue)

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS et al (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Phillis JW, Watkins JC (1959) Chemical excitation of spinal neurones. Nature 183:611–612

    Article  PubMed  CAS  Google Scholar 

  • D’Antoni S, Berretta A, Bonaccorso CM et al (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Zhang P et al (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • David JC, Yamada KA, Bagwe MR et al (1996) AMPA receptor activation is rapidly toxic to cortical astrocytes when desensitization is blocked. J Neurosci 16:200–209

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Traub O, Hwang TK et al (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci USA 86:10148–10152

    Article  PubMed  CAS  Google Scholar 

  • Diamond JS (2001) Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci 21:8328–8338

    PubMed  CAS  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hamprecht B (1996) Glutathione content as an indicator for the presence of metabolic pathways of amino acids in astroglial cultures. J Neurochem 67:1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Kranich O, Loschmann PA et al (1997) Use of dipeptides for the synthesis of glutathione by astroglia-rich primary cultures. J Neurochem 69:868–874

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hamprecht B, Broer S (1998) The peptide transporter PepT2 mediates the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures. J Neurochem 71:388–393

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Gros C et al (2001) Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Dunlop J (2006) Glutamate-based therapeutic approaches: targeting the glutamate transport system. Curr Opin Pharmacol 6:103–107

    Article  PubMed  CAS  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL et al (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff S, McAuley WA, Houle JD et al (1984) Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. J Neurosci Res 12:14–27

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff S, Ahmed I, Wang E (1990) The relationship of expression of statin, the nuclear protein of nonproliferating cells, to the differentiation and cell cycle of astroglia in cultures and in situ. J Neurosci Res 26:1–15

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Zhang M (2009) Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10:87–99

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  PubMed  CAS  Google Scholar 

  • Frigerio F, Casimir M, Carobbio S et al (2008) Tissue specificity of mitochondrial glutamate pathways and the control of metabolic homeostasis. Biochim Biophys Acta 1777:965–972

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21:252–258

    Article  PubMed  CAS  Google Scholar 

  • Gegelashvili G, Schousboe A (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45:233–238

    Article  PubMed  CAS  Google Scholar 

  • Gegelashvili G, Civenni G, Racagni G et al (1996) Glutamate receptor agonists up-regulate glutamate transporter GLAST in astrocytes. Neuroreport 8:261–265

    Article  PubMed  CAS  Google Scholar 

  • Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    Article  PubMed  CAS  Google Scholar 

  • Ghijsen WE, Leenders AG, Lopes da Silva FH (2003) Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem Res 28:1443–1452

    Article  PubMed  CAS  Google Scholar 

  • Gouaux E (2009) The molecular logic of sodium-coupled neurotransmitter transporters. Philos Trans R Soc Lond B Biol Sci 364:149–154

    Article  PubMed  CAS  Google Scholar 

  • Gouix E, Léveillé F, Nicole O et al (2009) Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci 40:463–473

    Article  PubMed  CAS  Google Scholar 

  • Gras G, Samah B, Hubert A et al. (2011) EEAT expression by macrophages and microglia: still more question than answers. Amino Acids (this issue)

  • Grewer C, Gameiro A, Zhang Z et al (2008) Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60:609–619

    Article  PubMed  CAS  Google Scholar 

  • Had L, Faivre-Sarrailh C, Legrand C et al (1993) The expression of tropomyosin genes in pure cultures of rat neurons, astrocytes and oligodendrocytes is highly cell-type specific and strongly regulated during development. Brain Res Mol Brain Res 18:77–86

    Article  PubMed  CAS  Google Scholar 

  • Had-Aissouni L (2011) Maintenance of antioxidant defenses of brain cells: plasma membrane glutamate transporters and beyond. Amino Acids (this issue)

  • Had-Aissouni L, Re DB, Nieoullon A et al (2002) Importance of astrocytic inactivation of synaptically released glutamate for cell survival in the central nervous system—are astrocytes vulnerable to low intracellular glutamate concentrations? J Physiol Paris 96:317–322

    Article  PubMed  CAS  Google Scholar 

  • Hamberger AC, Chiang GH, Nylen ES et al (1979) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res 168:513–530

    Article  PubMed  CAS  Google Scholar 

  • Hansson E, Ronnback L (2003) Glial neuronal signaling in the central nervous system. FASEB J 17:341–348

    Article  PubMed  CAS  Google Scholar 

  • Harada T, Harada C, Nakamura K et al (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  • Hassel B (2000) Carboxylation and anaplerosis in neurons and glia. Mol Neurobiol 22:21–40

    Article  PubMed  CAS  Google Scholar 

  • Haugeto O, Ullensvang K, Levy LM et al (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271:27715–27722

    Article  PubMed  CAS  Google Scholar 

  • Hayes D, Wiessner M, Rauen T et al (2005) Transport of l-[14C]cystine and l-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells. Neurochem Int 46:585–594

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Dringen R, Schousboe A et al (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Hansson E, Ronnback L (2001) Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hyden in memoriam. Neurochem Int 39:227–252

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  PubMed  CAS  Google Scholar 

  • Himi T, Ikeda M, Yasuhara T et al (2003) Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons. J Neural Transm 110:1337–1348

    Article  PubMed  CAS  Google Scholar 

  • Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    Article  PubMed  CAS  Google Scholar 

  • Hisano S (2003) Vesicular glutamate transporters in the brain. Anat Sci Int 78:191–204

    Article  PubMed  CAS  Google Scholar 

  • Holmseth S, Scott HA, Real K et al (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352

    Article  PubMed  CAS  Google Scholar 

  • Ivanov A, Pellegrino C, Rama S et al (2006) Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol 572:789–798

    PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh MP, Bendahan A, Zerangue N et al (1997) Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Biol Chem 272:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Keelan J, Allen NJ, Antcliffe D et al (2001) Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J Neurosci Res 66:873–884

    Article  PubMed  CAS  Google Scholar 

  • Khanna S, Roy S, Ryu H et al (2003) Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem 278:43508–43515

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Rutledge E, Goderie S et al (1995) Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J Cereb Blood Flow Metab 15:409–416

    Article  PubMed  CAS  Google Scholar 

  • Koch HP, Kavanaugh MP, Esslinger CS et al (1999) Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters. Mol Pharmacol 56:1095–1104

    PubMed  CAS  Google Scholar 

  • Kovacs AD, Cebers G, Cebere A et al (2002) Selective and AMPA receptor-dependent astrocyte death following prolonged blockade of glutamate reuptake in rat cerebellar cultures. Exp Neurol 174:58–71

    Article  PubMed  CAS  Google Scholar 

  • Kranich O, Hamprecht B, Dringen R (1996) Different preferences in the utilization of amino acids for glutathione synthesis in cultured neurons and astroglial cells derived from rat brain. Neurosci Lett 219:211–214

    Article  PubMed  CAS  Google Scholar 

  • Kranich O, Dringen R, Sandberg M et al (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22:11–18

    Article  PubMed  CAS  Google Scholar 

  • Krebs HA (1935) Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29:1951–1969

    PubMed  CAS  Google Scholar 

  • Krebs HA, Eggleston LV, Hems R (1949) Distribution of glutamine and glutamic acid in animal tissues. Biochem J 44:159–163

    CAS  Google Scholar 

  • Kullmann DM, Erdemli G, Asztely F (1996) LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17:461–474

    Article  PubMed  CAS  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP et al (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    PubMed  CAS  Google Scholar 

  • Lewerenz J, Maher P, Methner A (2011) Regulation of xCT expression and system x c function in neuronal cells. Amino Acids (this issue)

  • Lievens JC, Bernal F, Forni C et al (2000a) Characterization of striatal lesions produced by glutamate uptake alteration: cell death, reactive gliosis, and changes in GLT1 and GADD45 mRNA expression. Glia 29:222–232

    Article  PubMed  CAS  Google Scholar 

  • Lievens JC, Salin P, Had-Aissouni L et al (2000b) Differential effects of corticostriatal and thalamostriatal deafferentation on expression of the glutamate transporter GLT1 in the rat striatum. J Neurochem 74:909–919

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Smith CL, Barone FC et al (1999) Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Res Mol Brain Res 68:29–41

    Article  PubMed  CAS  Google Scholar 

  • Lodge D (2009) The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology 56:6–21

    Article  PubMed  CAS  Google Scholar 

  • Longuemare MC, Rose CR, Farrell K et al (1999) K(+) -induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na+. Neuroscience 93:285–292

    Article  PubMed  CAS  Google Scholar 

  • Lortet S, Samuel D, Had-Aissouni L et al (1999) Effects of PKA and PKC modulators on high affinity glutamate uptake in primary neuronal cell cultures from rat cerebral cortex. Neuropharmacology 38:395–402

    Article  PubMed  CAS  Google Scholar 

  • Machiyama Y, Balazs R, Merei T (1970) Incorporation of (14C) glutamate into glutathione in rat brain. J Neurochem 17:449–453

    Article  PubMed  CAS  Google Scholar 

  • Maciejewski PK, Rothman DL (2008) Proposed cycles for functional glutamate trafficking in synaptic neurotransmission. Neurochem Int 52:809–825

    Article  PubMed  CAS  Google Scholar 

  • Mandal PK, Seiler A, Perisic T et al (2010) System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency J Biol Chem 285:22244–22253

    Google Scholar 

  • Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60:395–407

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Brambrink AM, Lehmann C et al (1997) Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol 42:335–348

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Massieu L, Morales-Villagran A, Tapia R (1995) Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J Neurochem 64:2262–2272

    Article  PubMed  CAS  Google Scholar 

  • Massieu L, Del Rio P, Montiel T (2001) Neurotoxicity of glutamate uptake inhibition in vivo: correlation with succinate dehydrogenase activity and prevention by energy substrates. Neuroscience 106:669–677

    Article  PubMed  CAS  Google Scholar 

  • Matute C, Sanchez-Gomez MV, Martinez-Millan L et al (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci USA 94:8830–8835

    Article  PubMed  CAS  Google Scholar 

  • Matute C, Alberdi E, Domercq M et al (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    Article  PubMed  CAS  Google Scholar 

  • McBean G (2011) The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids (this issue)

  • McKenna MC (2007) The glutamate–glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH et al (1996) New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18:380–390

    Article  PubMed  CAS  Google Scholar 

  • Montana V, Ni Y, Sunjara V et al (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    Article  PubMed  CAS  Google Scholar 

  • Montana V, Malarkey EB, Verderio C et al (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  • Montiel T, Camacho A, Estrada-Sanchez AM et al (2005) Differential effects of the substrate inhibitor l-trans-pyrrolidine-2, 4-dicarboxylate (PDC) and the non-substrate inhibitor dl-threo-beta-benzyloxyaspartate (dl-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 133:667–678

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A et al (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 4:1624–1633

    PubMed  CAS  Google Scholar 

  • Musser DA, Oseroff AR (1994) The use of tetrazolium salts to determine sites of damage to the mitochondrial electron transport chain in intact cells following in vitro photodynamic therapy with Photofrin II. Photochem Photobiol 59:621–626

    PubMed  CAS  Google Scholar 

  • Mytilineou C, Kokotos Leonardi ET, Kramer BC et al (1999) Glial cells mediate toxicity in glutathione-depleted mesencephalic cultures. J Neurochem 73:112–119

    Article  PubMed  CAS  Google Scholar 

  • Nafia I, Re DB, Masmejean F et al (2008) Preferential vulnerability of mesencephalic dopamine neurons to glutamate transporter dysfunction. J Neurochem 105:484–496

    Article  PubMed  CAS  Google Scholar 

  • Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44:99–109

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    Google Scholar 

  • Newpher TM, Ehlers MD (2008) Glutamate receptor dynamics in dendritic microdomains. Neuron 58:472–497

    Article  PubMed  CAS  Google Scholar 

  • Oliet SH, Piet R, Poulain DA et al (2004) Glial modulation of synaptic transmission: Insights from the supraoptic nucleus of the hypothalamus. Glia 47:258–267

    Article  PubMed  Google Scholar 

  • Papadia S, Hardingham GE (2007) The dichotomy of NMDA receptor signaling. Neuroscientist 13:572–579

    PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F et al (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  • Persson M, Rönnbäck L (2011) Microglial self defence mediated through GLT-1 and glutathione. Amino Acids (this issue)

  • Piet R, Vargova L, Sykova E et al (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101:2151–2155

    Article  PubMed  CAS  Google Scholar 

  • Pines G, Danbolt NC, Bjoras M et al (1992) Cloning and expression of a rat brain l-glutamate transporter. Nature 360:464–467

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9:423–436

    Article  PubMed  CAS  Google Scholar 

  • Pow DV, Barnett NL (2000) Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280:21–24

    Article  PubMed  CAS  Google Scholar 

  • Re DB, Boucraut J, Samuel D et al (2003) Glutamate transport alteration triggers differentiation-state selective oxidative death of cultured astrocytes: a mechanism different from excitotoxicity depending on intracellular GSH contents. J Neurochem 85:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Re DB, Nafia I, Melon C et al (2006) Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport. Glia 54:47–57

    Article  PubMed  Google Scholar 

  • Reichelt W, Stabel-Burow J, Pannicke T et al (1997) The glutathione level of retinal Muller glial cells is dependent on the high-affinity sodium-dependent uptake of glutamate. Neuroscience 77:1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Richman PG, Meister A (1975) Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 250:1422–1426

    PubMed  CAS  Google Scholar 

  • Robertson RT, Zimmer J, Gahwiler BH (1989) Dissection procedures for preparation of slice cultures. In A dissection and tissue culture manual of the nervous system. Alan R. Liss, New York pp 1–15

  • Robinson MB, Coyle JT (1987) Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. FASEB J 1:446–455

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  • Rouach N, Avignone E, Meme W et al (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475

    Article  PubMed  CAS  Google Scholar 

  • Rutten EP, Engelen MP, Schols AM et al (2005) Skeletal muscle glutamate metabolism in health and disease: state of the art. Curr Opin Clin Nutr Metab Care 8:41–51

    Article  PubMed  CAS  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Shiiya A, Kimata M et al (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429

    Article  PubMed  CAS  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  PubMed  Google Scholar 

  • Schlag BD, Vondrasek JR, Munir M et al (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    PubMed  CAS  Google Scholar 

  • Schousboe A, Westergaard N, Sonnewald U et al (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366

    Article  PubMed  CAS  Google Scholar 

  • Seiler A, Schneider M, Förster H et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248

    Google Scholar 

  • Sem’yanov AV (2005) Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neurosci Behav Physiol 35:253–266

    PubMed  Google Scholar 

  • Sepkuty JP, Cohen AS, Eccles C et al (2002) A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J Neurosci 22:6372–6379

    PubMed  CAS  Google Scholar 

  • Shain W, Forman DS, Madelian V, Turner JN (1987) Morphology of astroglial cells is controlled by beta-adrenergic receptors. J Cell Biol 105:2307–2314

    Article  PubMed  CAS  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO et al (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  PubMed  CAS  Google Scholar 

  • Shanker G, Aschner M (2001) Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport. J Neurosci Res 66:998–1002

    Article  PubMed  CAS  Google Scholar 

  • Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265

    Article  PubMed  CAS  Google Scholar 

  • Shine HD, Haber B (1981) Immunocytochemical localization of gamma-glutamyl transpeptidase in the rat CNS. Brain Res 217:339–349

    Article  PubMed  CAS  Google Scholar 

  • Storck T, Schulte S, Hofmann K et al (1992) Structure, expression, and functional analysis of a Na(+) -dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Liu J, Miller JW et al (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    PubMed  CAS  Google Scholar 

  • Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    Article  PubMed  CAS  Google Scholar 

  • Takamori S (2006) VGLUTs: ‘exciting’ times for glutamatergic research? Neurosci Res 55:343–351

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C et al (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Schubert D, Maher P (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1:497–506

    Article  PubMed  CAS  Google Scholar 

  • Tibbs GR, Barrie AP, Van Mieghem FJ et al (1989) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release. J Neurochem 53:1693–1699

    Article  PubMed  CAS  Google Scholar 

  • Tobaben S, Grohm J, Seiler A et al (2011) Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ 18:282–292

    Google Scholar 

  • Trotti D, Rolfs A, Danbolt NC et al (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2:848

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A (2009) Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 195:111–122

    Article  CAS  Google Scholar 

  • Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:28–37

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  • Watabe M, Aoyama K, Nakaki T (2008) A dominant role of GTRAP3–18 in neuronal glutathione synthesis. J Neurosci 28:9404–9413

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC (2000) l-glutamate as a central neurotransmitter: looking back. Biochem Soc Trans 28:297–309

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Watanabe M, Shibata T et al (1996) EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7:2013–2017

    Article  PubMed  CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y et al (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

  • Yi Z, Petralia RS, Fu Z et al (2007) The role of the PDZ protein GIPC in regulating NMDA receptor trafficking. J Neurosci 27:11663–11675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this review was supported by grants from different French research agencies and foundations: CNRS, Aix-Marseille University, DGA, “NRJ-Institut de France”, “Fédération Française des Groupements de Parkinsoniens” and “France Parkinson”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Had-Aissouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Had-Aissouni, L. Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids 42, 181–197 (2012). https://doi.org/10.1007/s00726-011-0863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0863-9

Keywords

Navigation