Skip to main content

Advertisement

Log in

Tools for phospho- and glycoproteomics of plasma membranes

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abiria SA, Colbran RJ (2010) CaMKII associates with CaV1.2 L-type calcium channels via selected beta subunits to enhance regulatory phosphorylation. J Neurochem 112:150–161

    Article  PubMed  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Manilla G, Atwood J 3rd, Guo Y, Warren NL, Orlando R, Pierce M (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708

    Article  PubMed  CAS  Google Scholar 

  • Ballif BA, Carey GR, Sunyaev SR, Gygi SP (2008) Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res 7:311–318

    Article  PubMed  CAS  Google Scholar 

  • Blonder J, Goshe MB, Moore RJ, Pasa-Tolic L, Masselon CD, Lipton MS, Smith RD (2002) Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography–tandem mass spectrometry. J Proteome Res 1:351–360

    Article  PubMed  CAS  Google Scholar 

  • Blonder J, Terunuma A, Conrads TP, Chan KC, Yee C, Lucas DA, Schaefer CF, Yu LR, Issaq HJ, Veenstra TD, Vogel JC (2004) A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. J Invest Dermatol 123:691–699

    Article  PubMed  CAS  Google Scholar 

  • Bunkenborg J, Pilch BJ, Podtelejnikov AV, Wisniewski JR (2004) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4:454–465

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Li X, Liu Z, Peng X, Hu W, Wang X, Chen P, Xie J, Liang S (2006) Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J Proteome Res 5:634–642

    Article  PubMed  CAS  Google Scholar 

  • Chaney LK, Jacobson BS (1983) Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J Biol Chem 258:10062–10072

    PubMed  CAS  Google Scholar 

  • Chen EI, Cociorva D, Norris JL, Yates JR 3rd (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6:2529–2538

    Article  PubMed  CAS  Google Scholar 

  • Chen EI, McClatchy D, Park SK, Yates JR 3rd (2008) Comparisons of mass spectrometry compatible surfactants for global analysis of the mammalian brain proteome. Anal Chem 80:8694–8701

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Simon GM, Yates JR 3rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Darula Z, Medzihradszky KF (2009) Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics 8:2515–2526

    Article  PubMed  CAS  Google Scholar 

  • Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, Pratt WS, Dolphin AC (2010) The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci USA 107:1654–1659

    Article  PubMed  CAS  Google Scholar 

  • Dennis JW, Nabi IR, Demetriou M (2009) Metabolism, cell surface organization, and disease. Cell 139:1229–1241

    Article  PubMed  Google Scholar 

  • Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35:599–620

    Article  PubMed  CAS  Google Scholar 

  • Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19:237–244

    Article  PubMed  CAS  Google Scholar 

  • Durham M, Regnier FE (2006) Targeted glycoproteomics: serial lectin affinity chromatography in the selection of O-glycosylation sites on proteins from the human blood proteome. J Chromatogr A 1132:165–173

    Article  PubMed  CAS  Google Scholar 

  • Durr E, Yu J, Krasinska KM, Carver LA, Yates JR, Testa JE, Oh P, Schnitzer JE (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992

    Article  PubMed  CAS  Google Scholar 

  • Fischer F, Wolters D, Rogner M, Poetsch A (2006) Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics 5:444–453

    PubMed  CAS  Google Scholar 

  • Gerhardstein BL, Puri TS, Chien AJ, Hosey MM (1999) Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the beta 2 subunit of L-type voltage-dependent calcium channels. Biochemistry 38:10361–10370

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Krokhin O, Antonovici M, Ens W, Standing KG, Beavis RC, Wilkins JA (2004) Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res 3:841–850

    Article  PubMed  CAS  Google Scholar 

  • Gundry RL, Raginski K, Tarasova Y, Tchernyshyov I, Bausch-Fluck D, Elliott ST, Boheler KR, Van Eyk JE, Wollscheid B (2009) The mouse C2C12 myoblast cell surface N-linked glycoproteome: identification, glycosite occupancy, and membrane orientation. Mol Cell Proteomics 8:2555–2569

    Article  PubMed  CAS  Google Scholar 

  • Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566

    Article  PubMed  Google Scholar 

  • Hanisch FG, Jovanovic M, Peter-Katalinic J (2001) Glycoprotein identification and localization of O-glycosylation sites by mass spectrometric analysis of deglycosylated/alkylaminylated peptide fragments. Anal Biochem 290:47–59

    Article  PubMed  CAS  Google Scholar 

  • Hanisch FG, Teitz S, Schwientek T, Muller S (2009) Chemical de-O-glycosylation of glycoproteins for application in LC-based proteomics. Proteomics 9:710–719

    Article  PubMed  CAS  Google Scholar 

  • Jungblut PR, Holzhutter HG, Apweiler R, Schluter H (2008) The speciation of the proteome. Chem Cent J 2:16

    Article  PubMed  Google Scholar 

  • Jungblut PR, Schiele F, Zimny-Arndt U, Ackermann R, Schmid M, Lange S, Stein R, Pleissner KP (2010) Helicobacter pylori proteomics by 2-DE/MS, 1-DE-LC/MS and functional data mining. Proteomics 10:182–193

    Article  PubMed  CAS  Google Scholar 

  • Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N, Isobe T (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672

    Article  PubMed  CAS  Google Scholar 

  • Kaji H, Kamiie J, Kawakami H, Kido K, Yamauchi Y, Shinkawa T, Taoka M, Takahashi N, Isobe T (2007) Proteomics reveals N-linked glycoprotein diversity in Caenorhabditis elegans and suggests an atypical translocation mechanism for integral membrane proteins. Mol Cell Proteomics 6:2100–2109

    Article  PubMed  CAS  Google Scholar 

  • Katayama H, Tabata T, Ishihama Y, Sato T, Oda Y, Nagasu T (2004) Efficient in-gel digestion procedure using 5-cyclohexyl-1-pentyl-beta-d-maltoside as an additive for gel-based membrane proteomics. Rapid Commun Mass Spectrom 18:2388–2394

    Article  PubMed  CAS  Google Scholar 

  • Klugbauer N, Marais E, Hofmann F (2003) Calcium channel alpha2delta subunits: differential expression, function, and drug binding. J Bioenerg Biomembr 35:639–647

    Article  PubMed  CAS  Google Scholar 

  • Kuster B, Mann M (1999) 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal Chem 71:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  PubMed  CAS  Google Scholar 

  • Le Bihan T, Goh T, Stewart II, Salter AM, Bukhman YV, Dharsee M, Ewing R, Wisniewski JR (2006) Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J Proteome Res 5:2701–2710

    Article  PubMed  CAS  Google Scholar 

  • Li W, Backlund PS, Boykins RA, Wang G, Chen HC (2003) Susceptibility of the hydroxyl groups in serine and threonine to beta-elimination/Michael addition under commonly used moderately high-temperature conditions. Anal Biochem 323:94–102

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yu J, Wang Y, Griffin NM, Long F, Shore S, Oh P, Schnitzer JE (2009) Enhancing identifications of lipid-embedded proteins by mass spectrometry for improved mapping of endothelial plasma membranes in vivo. Mol Cell Proteomics 8:1219–1235

    Article  PubMed  CAS  Google Scholar 

  • Lowe JB, Marth JD (2003) A genetic approach to Mammalian glycan function. Annu Rev Biochem 72:643–691

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Zhu H (2005) Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics 4:1948–1958

    Article  PubMed  CAS  Google Scholar 

  • Lu A, Wisniewski JR, Mann M (2009) Comparative proteomic profiling of membrane proteins in rat cerebellum, spinal cord, and sciatic nerve. J Proteome Res 8:2418–2425

    Article  PubMed  CAS  Google Scholar 

  • Lund R, Leth-Larsen R, Jensen ON, Ditzel HJ (2009) Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J Proteome Res 8:3078–3090

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci USA 105:18132–18138

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731–740

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Saito N, Tomita M, Ishihama Y (2009) Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol Cell Proteomics 8:2770–2777

    Article  PubMed  CAS  Google Scholar 

  • McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA (2009) Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8:287–301

    PubMed  CAS  Google Scholar 

  • Nagaraj N, Lu A, Mann M, Wisniewski JR (2008) Detergent-based but gel-free method allows identification of several hundred membrane proteins in single LC–MS runs. J Proteome Res 7:5028–5032

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PA, Olsen JV, Podtelejnikov AV, Andersen JR, Mann M, Wisniewski JR (2005) Proteomic mapping of brain plasma membrane proteins. Mol Cell Proteomics 4:402–408

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  • Nunomura K, Nagano K, Itagaki C, Taoka M, Okamura N, Yamauchi Y, Sugano S, Takahashi N, Izumi T, Isobe T (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 4:1968–1976

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Andersen JR, Nielsen PA, Nielsen ML, Figeys D, Mann M, Wisniewski JR (2004) HysTag—a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol Cell Proteomics 3:82–92

    PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Nielsen PA, Andersen JR, Mann M, Wisniewski JR (2007) Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. Brain Res 1134:95–106

    Article  PubMed  CAS  Google Scholar 

  • Ostasiewicz P, Zielinska DF, Mann M, Wisniewski JR (2010) Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J Proteome Res 9:3688–3700

    Article  PubMed  CAS  Google Scholar 

  • Rahbar AM, Fenselau C (2004) Integration of Jacobson’s pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res 3:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Rahbar AM, Fenselau C (2005) Unbiased examination of changes in plasma membrane proteins in drug resistant cancer cells. J Proteome Res 4:2148–2153

    Article  PubMed  CAS  Google Scholar 

  • Schindler J, Lewandrowski U, Sickmann A, Friauf E, Nothwang HG (2006) Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol Cell Proteomics 5:390–400

    PubMed  CAS  Google Scholar 

  • Schluter H, Apweiler R, Holzhutter HG, Jungblut PR (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 3:11

    Article  PubMed  Google Scholar 

  • Seipert RR, Dodds ED, Lebrilla CB (2009) Exploiting differential dissociation chemistries of O-linked glycopeptide ions for the localization of mucin-type protein glycosylation. J Proteome Res 8:493–501

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  PubMed  CAS  Google Scholar 

  • Sostaric E, Georgiou AS, Wong CH, Watson PF, Holt WV, Fazeli A (2006) Global profiling of surface plasma membrane proteome of oviductal epithelial cells. J Proteome Res 5:3029–3037

    Article  PubMed  CAS  Google Scholar 

  • Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M (2005) Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 16:407–413

    PubMed  Google Scholar 

  • Speers AE, Wu CC (2007) Proteomics of integral membrane proteins—theory and application. Chem Rev 107:3687–3714

    Article  PubMed  CAS  Google Scholar 

  • Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    Article  PubMed  CAS  Google Scholar 

  • Stensballe A, Andersen S, Jensen ON (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1:207–222

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Ranish JA, Utleg AG, White JT, Yan X, Lin B, Hood L (2007) Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 6:141–149

    Article  PubMed  Google Scholar 

  • Tan F, Zhang Y, Mi W, Wang J, Wei J, Cai Y, Qian X (2008) Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J Proteome Res 7:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Thingholm TE, Larsen MR, Ingrell CR, Kassem M, Jensen ON (2008) TiO(2)-based phosphoproteomic analysis of the plasma membrane and the effects of phosphatase inhibitor treatment. J Proteome Res 7:3304–3313

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Gurley K, Meany DL, Kemp CJ, Zhang H (2009) N-linked glycoproteomic analysis of formalin-fixed and paraffin-embedded tissues. J Proteome Res 8:1657–1662

    Article  PubMed  CAS  Google Scholar 

  • Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208

    Article  PubMed  Google Scholar 

  • Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2009) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski JR (2008) Mass spectrometry-based proteomics: principles, perspectives, and challenges. Arch Pathol Lab Med 132:1566–1569

    PubMed  CAS  Google Scholar 

  • Wisniewski JR, Mann M (2009) Spin filter-based sample preparation for shotgun proteomics (Reply). Nat Methods 6:785–786

    Article  CAS  Google Scholar 

  • Wisniewski JR, Zougman A, Mann M (2009a) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009b) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9:3280–3289

    Article  PubMed  CAS  Google Scholar 

  • Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386

    Article  PubMed  CAS  Google Scholar 

  • Woods RJ, Edge CJ, Dwek RA (1994) Protein surface oligosaccharides and protein function. Nat Struct Biol 1:499–501

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, Yates JR 3rd (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21:262–267

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, MacCoss MJ, Howell KE, Yates JR 3rd (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21:532–538

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Andrews D, Regnier F (2003) Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res 2:618–625

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Harris LE, Palmer-Toy DE, Hancock WS (2006) Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem 52:1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Johann DJ Jr, Hakami RM, Xiao Z, Meng Z, Ulrich RG, Issaq HJ, Veenstra TD, Blonder J (2009) Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC–MS/MS. J Proteomics 73:112–122

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Xie J, Wang X, Liu X, Tang X, Cao R, Hu W, Nie S, Fan C, Liang S (2005) Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins. Proteomics 5:4510–4524

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Zhang W, Kho Y, Zhao Y (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823

    Article  PubMed  CAS  Google Scholar 

  • Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Matthias Mann for continuous support and Ms. Dorota F. Zielinska for critical reading of the manuscript. The work was supported by Max-Planck Society for the Advancement of Science, Munich Center for Integrated Protein Science (CIPSM), and PROSPECTS, a 7th framework program of the European Union (grant agreement HEALTH-F4-2008-201648/PROSPECTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek R. Wiśniewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiśniewski, J.R. Tools for phospho- and glycoproteomics of plasma membranes. Amino Acids 41, 223–233 (2011). https://doi.org/10.1007/s00726-010-0796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0796-8

Keywords

Navigation