Skip to main content

Advertisement

Log in

Adaptation of proteomic techniques for the identification and characterization of protein species from murine heart

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Disturbed energy metabolism with impaired fatty acid oxidation, ATP synthesis and changing levels of contractile proteins has been observed during the development and manifestation of cardiovascular diseases, with the latter showing sexual differences in terms of onset, manifestation and progress. Estrogenic compounds, such as estrogens and phytoestrogens, are known to exert beneficial effects on several cardiovascular parameters. However, global studies implying the normal, non-failing myocardium are rare. Thus, identifying and characterizing protein patterns involved in the maintenance of normal heart physiology at the protein species level will help understanding disease conditions. In this study, we performed an adapted 2-DE/MS approach in order to identify and characterize post-translational modified and truncated protein species from murine heart. Female and male animals of different age were receiving the phytoestrogen genistein and comparative analyses were performed to identify sex and genistein treatment-related effects. Selected 2-DE spots that exposed varying abundance between animal groups and identified as identical proteins were subject to multi-protease cleavage to generate an elevated sequence coverage enabling characterization of post-translational modifications and truncation loci via high-resolution MS. Several truncated, phosphorylated and acetylated species were identified for mitochondrial ATP synthase, malate dehydrogenase and trifunctional enzyme subunit alpha. However, confirmation of several of these modifications by manual spectra interpretation failed. Thus, our results warrant caution for the blind trust in software output. For the regulatory light chain of myosin, we identified an N-terminal processed species, which so far has been related to ischemic conditions only. We tried to unravel the information content of protein species separated by high-resolution 2-DE as an alternative to high-throughput proteomics, which mainly is interested in lists of protein names, ignoring the protein species identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arrell DK, Neverova I, Van Eyk JE (2001) Cardiovascular proteomics: evolution and potential. Circ Res 88:763–773

    Article  CAS  PubMed  Google Scholar 

  • Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448

    Article  CAS  PubMed  Google Scholar 

  • Baker L, Meldrum KK, Wang MJ, Sankula R, Vanam R, Raiesdana A, Tsai B, Hile K, Brown JW, Meldrum DR (2003) The role of estrogen in cardiovascular disease. J Surg Res 115:325–344

    Article  CAS  PubMed  Google Scholar 

  • Casey TM, Arthur PG, Bogoyevitch MA (2005) Proteomic analysis reveals different protein changes during endothelin-1- or leukemic inhibitory factor-induced hypertrophy of cardiomyocytes in vitro. Mol Cell Proteomics 4:651–661

    Article  CAS  PubMed  Google Scholar 

  • de Kleijn MJ, van der Schouw YT, Wilson PW, Grobbee DE, Jacques PF (2002) Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in postmenopausal U.S. women: the Framingham study. J Nutr 132:276–282

    Article  PubMed  Google Scholar 

  • de Tombe PP (2003) Cardiac myofilaments: mechanics and regulation. J Biomech 36:721–730

    Article  PubMed  Google Scholar 

  • Dello SP, Rovida E (2002) Transmodulation of cell surface regulatory molecules via ectodomain shedding. Biol Chem 383:69–83

    Google Scholar 

  • Eckerskorn C, Strahler J, Hanash S, Lottspeich F (1988) Identification and characterization of proteins after two-dimensional electrophoresis by microsequence analysis demonstrated with leukemia protein markers. Electrophoresis 9:624

    Article  Google Scholar 

  • Foster DB, Van Eyk JE (1999) In search of the proteins that cause myocardial stunning. Circ Res 85:470–472

    Article  CAS  PubMed  Google Scholar 

  • Hammer E, Phong TQ, Steil L, Klingel K, Salazar MG, Bernhardt J, Kandolf R, Kroemer HK, Felix SB, Völker U (2010) Viral myocarditis induced by Coxsackievirus B3 in A.BY/SnJ mice: analysis of changes in the myocardial proteome. Proteomics 10:1802–1818

    Article  CAS  PubMed  Google Scholar 

  • Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112

    Article  CAS  Google Scholar 

  • Hodis HN (2008) Assessing benefits and risks of hormone therapy in 2008: new evidence, especially with regard to the heart. Cleve Clin J Med 75(Suppl 4):S3–S12

    Article  PubMed  Google Scholar 

  • Hoehenwarter W, Ackermann R, Zimny-Arndt U, Kumar NM, Jungblut PR (2006) The necessity of functional proteomics: protein species and molecular function elucidation exemplified by in vivo alpha A crystallin N-terminal truncation. Amino Acids 31:317–323

    Article  CAS  PubMed  Google Scholar 

  • Jäger D, Jungblut PR, Müller-Werdan U (2002) Separation and identification of human heart proteins. J Chromatogr B 771:131–153

    Article  Google Scholar 

  • Jungblut P, Thiede B, Zimny-Arndt U, Muller EC, Scheler C, Wittmann-Liebold B, Otto A (1996) Resolution power of two-dimensional electrophoresis and identification of proteins from gels. Electrophoresis 17:839–847

    Article  CAS  PubMed  Google Scholar 

  • Jungblut PR, Holzhutter HG, Apweiler R, Schluter H (2008) The speciation of the proteome. Chem Cent J 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao HJ, Cheng CF, Chen YH, Hung SI, Huang CC, Millington D, Kikuchi T, Wu JY, Chen YT (2006) ENU mutagenesis identifies mice with cardiac fibrosis and hepatic steatosis caused by a mutation in the mitochondrial trifunctional protein beta-subunit. Hum Mol Genet 15:3569–3577

    Article  CAS  PubMed  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  CAS  PubMed  Google Scholar 

  • Klose J, Kobalz U (1995) 2-Dimensional electrophoresis of proteins—an updated protocol and implications for a functional-analysis of the genome. Electrophoresis 16:1034–1059

    Article  CAS  PubMed  Google Scholar 

  • Knecht M, Regitz-Zagrosek V, Pleissner KP, Emig S, Jungblut P, Hildebrandt A, Fleck E (1994) Dilated cardiomyopathy: computer-assisted analysis of endomyocardial biopsy protein patterns by two-dimensional gel electrophoresis. Eur J Clin Chem Clin Biochem 32:615–624

    CAS  PubMed  Google Scholar 

  • Kondo K, Suzuki Y, Ikeda Y, Umemura K (2002) Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation. Eur J Pharmacol 455:53–57

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41:1928–1939

    Article  CAS  PubMed  Google Scholar 

  • Lekgabe ED, Royce SG, Hewitson TD, Tang MLK, Zhao CX, Moore XL, Tregear GW, Bathgate RAD, Du XJ, Samuel CS (2006) The effects of relaxin and estrogen deficiency on collagen deposition and hypertrophy of nonreproductive organs. Endocrinology 147:5575–5583

    Article  CAS  PubMed  Google Scholar 

  • McCarty MF (2006) Isoflavones made simple—Genistein’s agonist activity for the beta-type estrogen receptor mediates their health benefits. Med Hypotheses 66:1093–1114

    Article  CAS  PubMed  Google Scholar 

  • Meng C, Jin X, Xia L, Shen SM, Wang XL, Cai J, Chen GQ, Wang LS, Fang NY (2009) Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J Proteome Res 8:2463–2475

    Article  CAS  PubMed  Google Scholar 

  • Minarik P, Tomaskova N, Kollarova M, Antalik M (2002) Malate dehydrogenases—structure and function. Gen Physiol Biophys 21:257–265

    CAS  PubMed  Google Scholar 

  • Okkels LM, Muller EC, Schmid M, Rosenkrands I, Kaufmann SH, Andersen P, Jungblut PR (2004) CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction. Proteomics 4:2954–2960

    Article  CAS  PubMed  Google Scholar 

  • Rottbauer W, Wessels G, Dahme T, Just S, Trano N, Hassel D, Burns CG, Katus HA, Fishman MC (2006) Cardiac myosin light chain-2—a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 99:323–331

    Article  CAS  PubMed  Google Scholar 

  • Schluter H, Apweiler R, Holzhutter HG, Jungblut PR (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Schott P, Asif AR, Graf C, Toischer K, Hasenfuss G, Kogler H (2008) Myocardial adaptation of energy metabolism to elevated preload depends on calcineurin activity: a proteomic approach. Basic Res Cardiol 103:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Kost CK, Martin DS (2006) Androgens augment renal vascular responses to ANG II in New Zealand genetically hypertensive rats. Am J Physiol Regul Integr Comp Physiol 290:R1608–R1615

    Article  CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Sun B, Khuchua Z, Bennett MJ, Strauss AW (2003) Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to beta-subunit mutations. Hum Mutat 21:598–607

    Article  CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Khuchua Z, Yue Z, Bennett MJ, Strauss AW (2004) General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Pediatr Res 55:190–196

    Article  CAS  PubMed  Google Scholar 

  • Squadrito F, Altavilla D, Crisafulli A, Saitta A, Cucinotta D, Morabito N, D’Anna R, Corrado F, Ruggeri P, Frisina N, Squadrito G (2003) Effect of genistein on endothelial function in postmenopausal women: a randomized, double-blind, controlled study. Am J Med 114:470–476

    Article  CAS  PubMed  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  • Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398

    Article  CAS  PubMed  Google Scholar 

  • Walker LA, Walker JS, Ambler SK, Buttrick PM (2009) Stage-specific changes in myofilament protein phosphorylation following myocardial infarction in mice. J Mol Cell Cardiol 48:1180–1186

    Article  PubMed  PubMed Central  Google Scholar 

  • White MY, Cordwell SJ, McCarron HC, Tchen AS, Hambly BD, Jeremy RW (2003) Modifications of myosin-regulatory light chain correlate with function of stunned myocardium. J Mol Cell Cardiol 35:833–840

    Article  CAS  PubMed  Google Scholar 

  • Yotov WV, St Arnaud R (1993) Cloning and functional expression analysis of the alpha subunit of mouse ATP synthase. Biochem Biophys Res Commun 191:142–148

    Article  CAS  PubMed  Google Scholar 

  • Zimny-Arndt U, Schmid M, Ackermann R, Jungblut PR (2009) Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. Methods Mol Biol 492:65–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by the Hypatia Programme for young female scientists, Berlin and The Charite Grant for promotion of young academics, Berlin, both were awarded to K. Schwab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima Schwab.

Electronic supplementary material

Below is the link to the electronic supplementary material.

This file is unfortunately not in the Publisher's archive anymore: Supplementary material 1 (RAR 35,447 kb)

Supplementary material 2 (PDF 19 kb)

Supplementary material 3 (PDF 2,451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, K., Neumann, B., Scheler, C. et al. Adaptation of proteomic techniques for the identification and characterization of protein species from murine heart. Amino Acids 41, 401–414 (2011). https://doi.org/10.1007/s00726-010-0675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0675-3

Keywords

Navigation