Skip to main content

Advertisement

Log in

Uptake and conversion of d-amino acids in Arabidopsis thaliana

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The d-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of d-amino acids (d-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of d-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their d-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey’s reagent and separated by HPLC–MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied d-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of d-AAs. The addition of particular amino acids (d-Trp, d-Phe, d-Met and d-His) led to the accumulation of the corresponding l-amino acid. In almost all cases, the application of a d-AA resulted in the accumulation of d-Ala and d-Glu. The presented results indicate that soil borne d-AAs can actively be taken up and metabolized via central metabolic routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldag RW, Young JL (1970) d-Amino acids in soils. Uptake and metabolism by seedling maize and ryegrass. Agron J 62:184–189

    Article  CAS  Google Scholar 

  • Amelung W (2003) Nitrogen biomarkers and their fate in soil. J Plant Nutr Soil Sci 166:677–686

    Article  CAS  Google Scholar 

  • Amelung W, Zhang X (2001) Determination of amino acid enantiomers in soils. Soil Biol Biochem 33:553–562

    Article  CAS  Google Scholar 

  • Auclair JL, Patton RL (1950) On the occurrence of d-alanine in the haemolymph of the milkweed bug, Ocopeltus fasciatus. Rev Can Biol 9:3–8

    CAS  PubMed  Google Scholar 

  • Brodowski S, Amelung W, Lobe I, Du Preez CC (2004) Losses and biogeochemical cycling of soil organic nitrogen with prolonged arable cropping in the South African Highveld—evidence form d- and l-amino acids. Biogeochemistry 71:17–42

    Article  CAS  Google Scholar 

  • Brückner H, Keller-Hoehl C (1990) HPLC separation of dl-amino acids derivatized with N2-(5-fluoro-2, 4-dinitorphenyl)-l-amino acid amides. Chromatographia 30:621–629

    Article  Google Scholar 

  • Brückner H, Westhauser T (1994) Chromatographic determination of d-amino acids as native constituents of vegetables and fruits. Chromatographia 39:419–426

    Article  Google Scholar 

  • Brückner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24:43–55

    Article  PubMed  Google Scholar 

  • Brückner H, Justus J, Kirschbaum J (2001) Saccharide induced racemization of amino acids in the course of the Maillard reaction. Amino Acids 21:429–433

    Article  PubMed  Google Scholar 

  • D’Aniello A (2007) d-aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53:215–234

    Article  PubMed  Google Scholar 

  • Erikson O, Hertzberg M, Näsholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nature Biotech 22:455–458

    Article  CAS  Google Scholar 

  • Forsum O, Svennerstam H, Ganeteg U, Näsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179:1058–1069

    CAS  PubMed  Google Scholar 

  • Fuchs SA, Berger R, Klomp LWJ, de Koning TJ (2005) d-amino acids in the central nervous system in health and disease. Mol Genet Metab 85:168–180

    Article  CAS  PubMed  Google Scholar 

  • Fujii N (2005) d-amino acid in elderly tissues. Biol Pharm Bull 28:1585–1589

    Article  CAS  PubMed  Google Scholar 

  • Fujitani Y, Nakajima N, Ishihara K, Oikawa T, Ito K, Sugimoto M (2006) Molecular and biochemical characterization of a serine racemase from Arabidopsis thaliana. Phytochemistry 67:668–674

    Article  CAS  PubMed  Google Scholar 

  • Fujitani Y, Horiuchi T, Ito K, Sugimoto M (2007) Serine racemases from barley Hordeum vulgare L., and other plant species represent a distinct eukaryotic group: gene cloning and recombinant protein characterization. Phytochemistry 68:1530–1536

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase—d-aspartate behaviour during germination. FEBS J 275:1188–1200

    Article  CAS  PubMed  Google Scholar 

  • Gholizadeh A, Kohnehrouz BB (2009) Molecular cloning and expression in Escherichia coli of an active fused Zea mays L. d-amino acid oxidase. Biochemistry (Moscow) 74:137–144

    Article  CAS  Google Scholar 

  • Grünewald J, Marahiel MM (2005) Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 70:121–146

    Article  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  CAS  PubMed  Google Scholar 

  • Izumiya N, Wade R, Winitz M, Otey MC, Birnbaum SM, Koegel RJ, Greenstein JP (1957) Studies on diastereoisomeric α-amino acids and corresponding α-hydroxy acids. VIII. Configuration of the isomeric octopines. J Am Chem Soc 79:652–658

    Article  CAS  Google Scholar 

  • Kullman JP, Chen X, Armstrong DW (1999) Evaluation of the enantiomeric composition of amino acids in tobacco. Chirality 11:669–673

    Article  CAS  PubMed  Google Scholar 

  • Machida M, Takechi K, Sato H, Chung SJ, Kuroiwa H, Takio S, Seki M, Shinozaki K, Fujita T, Hasebe M, Takano H (2006) Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. Proc Natl Acad Sci USA 103:6753–6758

    Article  CAS  PubMed  Google Scholar 

  • Manabe H (1992) Formation of dipeptides containing d-alanine in wild rice plants. Phytochemistry 31:527–529

    Article  CAS  Google Scholar 

  • Miura GA, Mills SE (1971) The conversion of d-tryptophan to l-tryptophan in cell cultures of tobacco. Plant Physiol 47:483–487

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog G (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–496

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Ono K, Yanagida K, Oikawa T, Ogawa T, Soda K (2006) Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochemistry 67:856–860

    Article  CAS  PubMed  Google Scholar 

  • Rekoslovskaya NI, Yurjeva OV, Salyaev RK, Mapelli S, Kopytina TV (1999) d-tryptophan as IAA source during wheat germination. Bulg J Plant Physiol 25:39–49

    Google Scholar 

  • Robinson T (1976) d-amino acids in higher plants. Life Sci 19:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Rozan P, Kuo YH, Lambein F (2001) Nonprotein amino acids in edible lentil and garden pea seedlings. Amino Acids 20:319–324

    Article  CAS  PubMed  Google Scholar 

  • Stein T, Kluge B, Vater J, Franke P, Otto A, Wittmann-Liebold B (1995) Gramicidin S synthetase 1 (phenylalanine racemase), a prototype of amino acid racemases containing the cofactor 4′-phosphopantetheine. Biochemistry 34:4633–4642

    Article  CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  CAS  PubMed  Google Scholar 

  • van Heijenoort J (2001) Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25R–36R

    Article  PubMed  Google Scholar 

  • Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Esaki N (2003) Amino acid racemases: functions and mechanisms. J Biosci Bioeng 96:103–109

    CAS  PubMed  Google Scholar 

  • Zenk MH, Scherf H (1963) d-Tryptophan in höheren Pflanzen. Biochim Biophys Acta 71:737–738

    Article  CAS  Google Scholar 

  • Zenk MH, Scherf H (1964) Verbreitung der d-Tryptophan-Konjugationsmechanismen im Pflanzenreich. Planta 62:350–354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Seed stocks of Col-0, C24 and lht1-1 were kindly provided by Dierk Wanke and Friederike Ladwig. (ZMBP, University of Tübingen). We thank Sandra Klehn and Grit Ulrich for their excellent technical assistance and Laura von Brzezinski and Franziska Retz (Innerstädtisches Gymnasium Rostock, Germany) for their initial works. We would like to thank the Federal Ministry of Education and Research Germany (BMBF) for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Üner Kolukisaoglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 974 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gördes, D., Kolukisaoglu, Ü. & Thurow, K. Uptake and conversion of d-amino acids in Arabidopsis thaliana . Amino Acids 40, 553–563 (2011). https://doi.org/10.1007/s00726-010-0674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0674-4

Keywords

Navigation