Skip to main content

Advertisement

Log in

Protein scaffold-based molecular probes for cancer molecular imaging

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein scaffold molecules are powerful reagents for targeting various cell signal receptors, enzymes, cytokines and other cancer-related molecules. They belong to the peptide and small protein platform with distinct properties. For the purpose of development of new generation molecular probes, various protein scaffold molecules have been labeled with imaging moieties and evaluated both in vitro and in vivo. Among the evaluated probes Affibody molecules and analogs, cystine knot peptides, and nanobodies have shown especially good characteristics as protein scaffold platforms for development of in vivo molecular probes. Quantitative data obtained from positron emission tomography, single photon emission computed tomography/CT, and optical imaging together with biodistribution studies have shown high tumor uptakes and high tumor-to-blood ratios for these probes. High tumor contrast imaging has been obtained within 1 h after injection. The success of those molecular probes demonstrates the adequacy of protein scaffold strategy as a general approach in molecular probe development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlgren S, Orlova A, Rosik D, Sandström M, Sjöberg A, Baastrup B, Widmark O, Fant G, Feldwisch J, Tolmachev V (2008) Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules. Bioconjug Chem 19:235–243

    Article  PubMed  CAS  Google Scholar 

  • Ahlgren S, Wållberg H, Tran TA, Widström C, Hjertman M, Abrahmsén L, Berndorff D, Dinkelborg LM, Cyr JE, Feldwisch J, Orlova A, Tolmachev V (2009) Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J Nucl Med 50:781–789

    Article  PubMed  CAS  Google Scholar 

  • Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A, Grutter MG, Forrer P, Plückthun A (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem 280:24715–24722

    Article  PubMed  CAS  Google Scholar 

  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  PubMed  CAS  Google Scholar 

  • Austin J, Wang W, Puttamadappa S, Shekhtman A, Camarero JA (2009) Biosynthesis and biological screening of a genetically encoded library based on the cyclotide MCoTI-I. ChemBioChem 10:2663–2670

    Article  PubMed  CAS  Google Scholar 

  • Baum RP, Orlova A, Tolmachev V, Feldwisch J (2006) Receptor PET/CT and SPECT using an Affibody molecule for targeting and molecular imaging of HER2-positive cancer in animal xenografts and human breast cancer patients [abstract]. J Nucl Med 47(suppl):108P

    Google Scholar 

  • Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grutter MG, Plückthun A (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Zhu Z, Feng Y, Xiao X, Dimitrov DS (2008) Construction of a large phage-displayed human antibody domain library with a scaffold based on a newly identified highly soluble, stable heavy chain variable domain. J Mol Biol 382:779–789

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Padilla De Jesus O, Namavari M, De A, Levi J, Webster JM, Zhang R, Lee B, Syud FA, Gambhirl SS (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 49:804–813

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, De Jesus OP, Kramer DJ, De A, Webster JM, Gheysens O, Levi J, Namavari M, Wang S, Park JM, Zhang R, Liu H, Lee B, Syud FA, Gambhir SS (2009) 64Cu-labeled Affibody molecules for imaging of HER2 expressing tumors. Mol Imaging Biol (Epub ahead of print)

  • Cortez-Retamozo V, Lahoutte T, Caveliers V, Gainkam LO, Hernot S, Packeu A, De Vos F, Vanhove C, Muyldermans S, Baetselier PD, Revets H (2008) 99mTc-labeled nanobodies: a new type of targeted probes for imaging antigen expression. Curr Radiopharm 1:37–41

    CAS  Google Scholar 

  • Di Carlo A, Mariano A, D’Alessandro V, Belli G, Romano G, Macchia V (2001) Evaluation of epidermal growth factor receptor, carcinoembryonic antigen and Lewis carbohydrate antigens in human colorectal and liver neoplasias. Oncol Rep 8:387–392

    PubMed  CAS  Google Scholar 

  • Ekblad T, Tran T, Orlova A, Widström C, Feldwisch J, Abrahmsén L, Wennborg A, Karlström AE, Tolmachev V (2008) Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging. 35:2245–2255

    Article  PubMed  CAS  Google Scholar 

  • Engfeldt T, Renberg B, Brumer H, Nygren PA, Karlström AE (2005) Chemical synthesis of triple-labelled three-helix bundle binding proteins for specific fluorescent detection of unlabelled protein. ChemBioChem 6:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Gainkam LO, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, Vanhove C, Revets H, De Baetselier P, Lahoutte T (2008) Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 49:788–795

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  PubMed  CAS  Google Scholar 

  • Getmanova EV, Chen Y, Bloom L, Gokemeijer J, Shamah S, Warikoo V, Wang J, Ling V, Sun L (2006) Antagonists to human and mouse vascular endothelial growth factor receptor 2 generated by directed protein evolution in vitro. Chem. Biol. 13:549–556

    Article  PubMed  CAS  Google Scholar 

  • Gill DS, Damle NK (2006) Biopharmaceutical drug discovery using novel protein scaffolds. Curr Opin Biotechnol 17:653–658

    Article  PubMed  CAS  Google Scholar 

  • Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, Cummins LB, Hayhurst A (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 78:8245–8255

    Article  PubMed  CAS  Google Scholar 

  • Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  PubMed  CAS  Google Scholar 

  • Heyd B, Pecorari F, Collinet B, Adjadj E, Desmadril M, Minard P (2003) In vitro evolution of the binding specificity of neocarzinostatin, an enediyne-binding chromoprotein. Biochemistry 42:5674–5683

    Article  PubMed  CAS  Google Scholar 

  • Hosse RJ, Rothe A, Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Protein Sci 15:14–27

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Gainkam LO, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, Bossuyt A, Revets H, Lahoutte T (2008) SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol 10:167–175

    Article  PubMed  Google Scholar 

  • Jiang L, Kimura RH, Miao Z, Silverman AP, Ren G, Liu HG, Li PY, Gambhir SS, Cochran JR, Cheng Z (2010) Evaluation of a 64Cu-labeled cystine-knot peptide based on agouti related protein for PET imaging of tumors expressing αvβ3 integrin. J Nucl Med 51(2):251–258

    Google Scholar 

  • Jonsson A, Dogan J, Herne N, Abrahmsén L, Nygren PA (2008) Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel 21:515–527

    Article  PubMed  CAS  Google Scholar 

  • Jonsson A, Wållberg H, Herne N, Ståhl S, Frejd FY (2009) Generation of tumour-necrosis-factor-alpha-specific affibody molecules capable of blocking receptor binding in vitro. Biotechnol Appl Biochem 54:93–103

    Article  PubMed  CAS  Google Scholar 

  • Kimura RH, Cheng Z, Gambhir SS, Cochran JR (2009a) Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. Cancer Res 69:2435–2442

    Article  PubMed  CAS  Google Scholar 

  • Kimura RH, Levin AM, Cochran FV, Cochran JR (2009b) Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins [Epub ahead of print]

  • Kimura RH, Miao Z, Cheng Z, Gambhir SS, Cochran JR (2009c) A dual-labeled knottin peptide for PET and near-infrared fluorescence imaging of integrin expression in living subjects. World Molecular Imaging Congress (abstract)

  • Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J (2008) [18F]FBEM-Z(HER2:342)-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging. 35:1008–1018

    Article  PubMed  CAS  Google Scholar 

  • Kramer-Marek G, Kiesewetter DO, Capala J (2009) Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and 18F-labeled affibody molecules. J Nucl Med 50:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Ku J, Schultz PG (1995) Alternate protein frameworks for molecular recognition. Proc Natl Acad Sci 92:6552–6556

    Article  PubMed  CAS  Google Scholar 

  • Ladner RC (1999) Polypeptides from phage display: a superior source of in vivo imaging agents. Q J Nucl Med 43:119–124

    PubMed  CAS  Google Scholar 

  • Lamla T, Erdmann VA (2003) Searching sequence space for high affinity binding peptides using ribosome display. J Mol Biol 329:381–388

    Article  PubMed  CAS  Google Scholar 

  • Lamla T, Erdmann VA (2004) The Nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant proteins. Protein Expr Purif 33:39–47

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Hassan M, Fisher R, Chertov O, Chernomordik V, Kramer-Marek G, Gandjbakhche A, Capala J (2008) Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 14:3840–3849

    Article  PubMed  CAS  Google Scholar 

  • Legendre D, Vucic B, Hougardy V, Girboux AL, Henrioul C, Van Haute J, Soumillion P, Fastrez J (2002) TEM-1 beta-lactamase as a scaffold for protein recognition and assay. Protein Sci 11:1506–1518

    Article  PubMed  CAS  Google Scholar 

  • Lehtio J, Teeri TT, Nygren PA (2000) α-Amylase inhibitors selected from a combinatorial library of a cellulose binding domain scaffold. Proteins 41:316–322

    Article  PubMed  CAS  Google Scholar 

  • Li R, Hoess RH, Bennett JS, DeGrado WF (2003) Use of phage display to probe the evolution of binding specificity and affinity in integrins. Protein Eng 16:65–72

    Article  PubMed  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  • Miao Z, Ren G, Liu H, Kimura RH, Jiang L, Gambhir SS, Cochran J, Cheng Z (2009a) An engineered knottin peptide labeled with 18F for PET imaging of integrin expression. Bioconjug Chem 20(12):2342–2347

    Google Scholar 

  • Miao Z, Ren G, Liu H, Jiang L, Wang YH, Gambhir SS, Cheng Z (2009b) Affibody based molecular probes for EGFR PET and optical imaging. World Molecular Imaging Congress Meeting (abstract)

  • Nygren PA, Skerra A (2004) Binding proteins from alternative scaffolds. J Immunol Methods 290:3–28

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Höidén-Guthenberg I, Widström C, Carlsson J, Tolmachev V, Ståhl S, Nilsson FY (2006a) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4448

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Nilsson FY, Wikman M, Widström C, Ståhl S, Carlsson J, Tolmachev V (2006b) Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 Affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med 47:512–519

    PubMed  CAS  Google Scholar 

  • Orlova A, Wållberg H, Stone-Elander S, Tolmachev V (2009) On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med 50:417–425

    Article  PubMed  CAS  Google Scholar 

  • Ren G, Zhang R, Liu Z, Webster JM, Miao Z, Gambhir SS, Syud FA, Cheng Z (2009) A 2-helix small protein labeled with 68Ga for PET imaging of HER2 expression. J Nucl Med 50:1492–1499

    Article  PubMed  CAS  Google Scholar 

  • Roberts BL, Markland W, Ley AC, Kent RB, White DW, Guterman SK, Ladner RC (1992) Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc Natl Acad Sci USA 89:2429–2433

    Article  PubMed  CAS  Google Scholar 

  • Rothe A, Hosse RJ, Power BE (2006) In vitro display technologies reveal novel biopharmaceutics. FASEB J 20:1599–1610

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Buchert M, Georgiev O, Catimel B, Halford M, Stacker SA, Baechi T, Moelling K, Hovens CM (1999) Mutagenesis and selection of PDZ domains that bind new protein targets. Nat Biotechnol 17(2):170–175

    Article  PubMed  CAS  Google Scholar 

  • Signore A, Annovazzi A, Chianelli M, Corsetti F, Van de Wiele C, Watherhouse RN (2001) Peptide radiopharmaceuticals for diagnosis and therapy. Eur J Nucl Med 28:1556–1565

    Google Scholar 

  • Silverman AP, Levin AM, Lahti JL, Cochran JR (2009) Engineered cystine-knot peptides that bind alpha(v)beta (3) integrin with antibody-like affinities. J Mol Biol 385(4):1064–1075

    Google Scholar 

  • Thongyoo P, Bonomelli C, Leatherbarrow RJ, Tate EW (2009) Potent inhibitors of beta-tryptase and human leukocyte elastase based on the MCoTI-II scaffold. J Med Chem 52:6197–6200

    Article  PubMed  CAS  Google Scholar 

  • Tolmachev V, Nilsson FY, Widström C, Andersson K, Rosik D, Gedda L, Wennborg A, Orlova A (2006) 111In-benzyl-DTPA-ZHER2:342, an Affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 47:846–853

    PubMed  CAS  Google Scholar 

  • Tolmachev V, Xu H, Wållberg H, Ahlgren S, Hjertman M, Sjöberg A, Sandström M, Abrahmsén L, Brechbiel MW, Orlova A (2008) Evaluation of a maleimido derivative of CHX-A″-DTPA for site-specific labeling of Affibody molecules. Bioconjug Chem 9:1579–1587

    Article  Google Scholar 

  • Tolmachev V, Friedman M, Sandström M, Eriksson TL, Rosik D, Hodik M, Ståhl S, Frejd FY, Orlova A (2009) Affibody molecules for epidermal growth factor receptor targeting in vivo: aspects of dimerization and labeling chemistry. J Nucl Med 50:274–283

    Article  PubMed  Google Scholar 

  • Tran T, Engfeldt T, Orlova A, Sandström M, Feldwisch J, Abrahmsén L, Wennborg A, Tolmachev V, Karlström AE (2007a) 99mTc-maEEE-Z(HER2:342), an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 18:1956–1964

    Article  PubMed  CAS  Google Scholar 

  • Tran T, Engfeldt T, Orlova A, Widström C, Bruskin A, Tolmachev V, Karlström AE (2007b) In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Bioconjug Chem 18:549–558

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama F, Tanaka Y, Minari Y, Tokui N (2005) Designing scaffolds of peptides for phage display libraries. J Biosci Bioeng 99:448–456

    Article  PubMed  CAS  Google Scholar 

  • Vogt M, Skerra A (2004) Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. ChemBioChem 5:191–199

    Article  PubMed  CAS  Google Scholar 

  • Webster JM, Zhang R, Gambhir SS, Cheng Z, Syud FA (2009) Engineered two-helix small proteins for molecular recognition. Chembiochem 10:1293–1296

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23(9):1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Aha P, Gu K, Kuimelis RG, Kurz M, Lam T, Lim AC, Liu H, Lohse PA, Sun L, Weng S, Wagner RW, Lipovsek D (2002) Directed evolution of high affinity antibody mimics using mRNA display. Chem Biol 9:933–942

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Z., Levi, J. & Cheng, Z. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids 41, 1037–1047 (2011). https://doi.org/10.1007/s00726-010-0503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0503-9

Keywords

Navigation