Skip to main content
Log in

Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The in vitro metabolic stability of histidine-dipeptides (HD), carnosine (CAR) and anserine (ANS), in human serum, and their absorption kinetics after ingesting pure carnosine or HD rich foods in humans have been investigated. Healthy women (n = 4) went through four phases of taking one dose of either 450 mg of pure carnosine, 150 g beef (B), 150 g chicken (C), or chicken broth (CB) from 150 g chicken with a >2-week washout period between each phase. Blood samples were collected at 0, 30, 60, 100, 180, 240, and 300 min, and urine samples before and after (up to 7 h) ingesting pure carnosine or food. Both plasma and urine samples were analyzed for HD concentrations using a sensitive and selective LC–ESI-MS/MS method. CAR was undetectable in plasma after ingesting pure carnosine, B, C or CB. By contrast, plasma ANS concentration was significantly increased (P < 0.05) after ingesting C or CB, respectively. Urinary concentrations of both CAR and ANS were 13- to 14-fold increased after ingesting B, and 14.8- and 243-fold after CB ingestion, respectively. Thus, dietary HD, which are rapidly hydrolyzed by carnosinase in plasma, and excreted in urine, may act as reactive carbonyl species sequestering agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 65:757–765

    CAS  Google Scholar 

  • Aldini G, Carini M, Beretta G et al (2002) Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction? Biochem Biophys Res Commun 298:699–706. doi:10.1016/S0006-291X(02)02545-7

    Article  CAS  PubMed  Google Scholar 

  • Aldini G, Orioli M, Carini M, Maffei Facino R (2004) Profiling histidine-containing dipeptides in rat tissues by liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom 39:1417–1428. doi:10.1002/jms.696

    Article  CAS  PubMed  Google Scholar 

  • Aldini G, Facino RM, Beretta G, Carini M (2005) Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives. Biofactors 24:77–87. doi:10.1002/biof.5520240109

    Article  CAS  PubMed  Google Scholar 

  • Alhamdani MS, Al-Azzawie HF, Abbas FK (2007) Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Perit Dial Int 27:86–89

    CAS  PubMed  Google Scholar 

  • Bonfanti L, Peretto P, De Marchis S, Fasolo A (1999) Carnosine-related dipeptides in the mammalian brain. Prog Neurobiol 59:333–353. doi:10.1016/S0301-0082(99)00010-6

    Article  CAS  PubMed  Google Scholar 

  • Brownson C, Hipkiss AR (2000) Carnosine reacts with a glycated protein. Free Radic Biol Med 28:1564–1570. doi:10.1016/S0891-5849(00)00270-7

    Article  CAS  PubMed  Google Scholar 

  • Carini M, Aldini G, Beretta G et al (2003) Acrolein-sequestering ability of endogenous dipeptides: characterization of carnosine and homocarnosine/acrolein adducts by electrospray ionization tandem mass spectrometry. J Mass Spectrom 38:996–1006. doi:10.1002/jms.517

    Article  CAS  PubMed  Google Scholar 

  • Crush KG (1970) Carnosine and related substances in animal tissues. Comp Biochem Physiol 34:3–30. doi:10.1016/0010-406X(70)90049-6

    Article  CAS  PubMed  Google Scholar 

  • Egorov S, Kurella EG, Boldyrev AA, Krasnovsky AA Jr (1997) Quenching of singlet molecular oxygen by carnosine and related antioxidants. Monitoring 1270-nm phosphorescence in aqueous media. Biochem Mol Biol Int 41:687–694

    CAS  PubMed  Google Scholar 

  • Gardner ML, Illingworth KM, Kelleher J, Wood D (1991) Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol 439:411–422

    CAS  PubMed  Google Scholar 

  • Gil-Agusti M, Esteve-Romero J, Carda-Broch S (2008) Anserine and carnosine determination in meat samples by pure micellar liquid chromatography. J Chromatogr A 1189:444–450. doi:10.1016/j.chroma.2007.11.075

    Article  CAS  PubMed  Google Scholar 

  • Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315. doi:10.2174/0929867054864796

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30:279–289. doi:10.1007/s00726-006-0299-9

    Article  CAS  PubMed  Google Scholar 

  • Horinishi H, Grillo M, Margolis FL (1978) Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem 31:909–919. doi:10.1111/j.1471-4159.1978.tb00127.x

    Article  CAS  PubMed  Google Scholar 

  • Jappar D, Hu Y, Keep RF, Smith DE (2009) Transport mechanisms of carnosine in SKPT cells: contribution of apical and basolateral membrane transporters. Pharm Res 26(1):172–181. doi:10.1007/s11095-008-9726-9

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Kim KS, Choi SY et al (2002) Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Mol Cells 13:498–502

    CAS  PubMed  Google Scholar 

  • Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85:3175–3179. doi:10.1073/pnas.85.9.3175

    Article  CAS  PubMed  Google Scholar 

  • Kurata H, Fujii T, Tsutsui H et al (2006) Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther 319:640–647. doi:10.1124/jpet.106.110122

    Article  CAS  PubMed  Google Scholar 

  • Margolis FL (1974) Carnosine in the primary olfactory pathway. Science 184:909–911. doi:10.1126/science.184.4139.909

    Article  CAS  PubMed  Google Scholar 

  • Min J, Senut MC, Rajanikant K et al (2008) Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia. J Neurosci Res 86:2984–2991

    Google Scholar 

  • Orioli M, Aldini G, Beretta G, Facino RM, Carini M (2005) LC–ESI-MS/MS determination of 4-hydroxy-trans-2-nonenal Michael adducts with cysteine and histidine-containing peptides as early markers of oxidative stress in excitable tissues. J Chromatogr B Analyt Technol Biomed Life Sci 827:109–118. doi:10.1016/j.jchromb.2005.04.025

    Article  CAS  PubMed  Google Scholar 

  • Orioli M, Aldini G, Benfatto MC, Facino RM, Carini M (2007) HNE Michael adducts to histidine and histidine-containing peptides as biomarkers of lipid-derived carbonyl stress in urines: LC–MS/MS profiling in Zucker obese rats. Anal Chem 79:9174–9184. doi:10.1021/ac7016184

    Article  CAS  PubMed  Google Scholar 

  • Park YJ, Volpe SL, Decker EA (2005) Quantitation of carnosine in humans plasma after dietary consumption of beef. J Agric Food Chem 53:4736–4739. doi:10.1021/jf047934h

    Article  CAS  PubMed  Google Scholar 

  • Petroff OA, Hyder F, Rothman DL, Mattson RH (2001) Homocarnosine and seizure control in juvenile myoclonic epilepsy and complex partial seizures. Neurology 56:709–715

    CAS  PubMed  Google Scholar 

  • Rajanikant GK, Zemke D, Senut MC et al (2007) Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 38:3023–3031. doi:10.1161/STROKEAHA.107.488502

    Article  CAS  PubMed  Google Scholar 

  • Rashid I, van Reyk DM, Davies MJ (2007) Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. FEBS Lett 581:1067–1070. doi:10.1016/j.febslet.2007.01.082

    Article  CAS  PubMed  Google Scholar 

  • Sauerhofer S, Yuan G, Braun GS et al (2007) l-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 56:2425–2432. doi:10.2337/db07-0177

    Article  PubMed  Google Scholar 

  • Son DO, Satsu H, Kiso Y, Shimizu M (2004) Characterization of carnosine uptake and its physiological function in human intestinal epithelial Caco-2 cells. Biofactors 21:395–398. doi:10.1002/biof.552210177

    Article  CAS  PubMed  Google Scholar 

  • Stuerenburg HJ (2000) The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases. Biochemistry (Mosc) 65:862–865

    CAS  Google Scholar 

  • Tang SC, Arumugam TV, Cutler RG et al (2007) Neuroprotective actions of a histidine analogue in models of ischemic stroke. J Neurochem 101:729–736. doi:10.1111/j.1471-4159.2006.04412.x

    Article  CAS  PubMed  Google Scholar 

  • Teufel M, Saudek V, Ledig JP et al (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278:6521–6531. doi:10.1074/jbc.M209764200

    Article  CAS  PubMed  Google Scholar 

  • Vistoli G, Pedretti A, Cattaneo M et al (2006) Homology modeling of human serum carnosinase, a potential medicinal target, and MD simulations of its allosteric activation by citrate. J Med Chem 49:3269–3277. doi:10.1021/jm0602099

    Article  CAS  PubMed  Google Scholar 

  • Vistoli G, Orioli M, Pedretti A, Regazzoni L, Canevotti R, Negrisoli G, Carini M, Aldini G (2009) Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. Chem Med Chem. doi:10.1002/cmdc.200800433

  • Wassif WS, Sherwood RA, Amir A et al (1994) Serum carnosinase activities in central nervous system disorders. Clin Chim Acta 225:57–64. doi:10.1016/0009-8981(94)90027-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by the U.S. Department of Agriculture, under agreement number 581950-9-001. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Jin Yeum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeum, KJ., Orioli, M., Regazzoni, L. et al. Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids 38, 847–858 (2010). https://doi.org/10.1007/s00726-009-0291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0291-2

Keywords

Navigation