Skip to main content
Log in

Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Antifreeze glycoproteins enable life at temperatures below the freezing point of physiological solutions. They usually consist of the repetitive tripeptide unit (-Ala-Ala-Thr-) with the disaccharide α-d-galactosyl-(1–3)-β-N-acetyl-d-galactosamine attached to each hydroxyl group of threonine. Monoglycosylated analogues have been synthesized from the corresponding monoglycosylated threonine building block by microwave-assisted solid phase peptide synthesis. This method allows the preparation of analogues containing sequence variations which are not accessible by other synthetic methods. As antifreeze glycoproteins consist of numerous isoforms they are difficult to obtain in pure form from natural sources. The synthetic peptides have been structurally analyzed by CD and NMR spectroscopy in proton exchange experiments revealing a structure as flexible as reported for the native peptides. Microphysical recrystallization tests show an ice structuring influence and ice growth inhibition depending on the concentration, chain length and sequence of the peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFGP:

Antifreeze glycopeptide

AFP:

Antifreeze protein

br:

Broad

CD:

Circular dichroism

DIPEA:

N,N-Diisopropylethylamine

DMF:

N,N-Dimethylformamide

EtOAc:

Ethyl acetate

Fmoc:

N-(9H-Fluoren-9-yl)-methoxycarbonyl

GalNAc:

2-Acetamido-2-deoxy-d-galactopyranosyl-

HATU:

O-(7-Azabenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate

HOAt:

1-Hydroxy-7-azabenzotriazole

MeOH:

Methanol

HOBt:

1-Hydroxybenzotriazole

NaOMe:

Sodium methoxide

NMP:

1-Methyl-2-pyrrolidone

TBTU:

O-(Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate

TFA:

Trifluoroacetic acid

TFE:

2,2,2-Trifluoroethanol

References

  • Bhatnagar RS, Gough CA (1996) Circular dichroism of collagen and related polypeptides. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. New York, Plenum Press, p 198

    Google Scholar 

  • Bouvet V, Ben RN (2003) Antifreeze glycoproteins—structure, conformation, and biological applications. Cell Biochem Biophys 39:133–134

    Article  CAS  PubMed  Google Scholar 

  • Brocke C, Kunz H (2002) Synthesis of tumor-associated glycopeptide antigens. Biorg Med Chem 10:3085–3112

    Article  CAS  Google Scholar 

  • Budke C, Koop T (2006) Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). Chemphyschem 7:2601–2606

    Article  CAS  PubMed  Google Scholar 

  • Bush CA, Feeney DT, Osuga T, Ralapati S, Yeh Y (1981) Antifreeze glycoprotein. Conformational model based on vacuum ultraviolet circular dichroism data. Int J Peptide Protein Res 17:125–129

    CAS  Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc London Ser B 357:927–933

    Article  CAS  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908

    CAS  PubMed  Google Scholar 

  • Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    Article  CAS  PubMed  Google Scholar 

  • Ernst B, Hart GW, Sinaÿ P (2000) Carbohydrates in chemistry and biology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Harding MM, Anderberg PI, Haymet AD (2003) ‘Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Horng JC, Raines RT (2006) Stereoelectronic effects on polyproline conformation. Protein Sci 15:74–83

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, Hallet J, DeVries AL (1988) Solute effects in ice recrystallization: an assessment technique. Cryobiology 25:55–60

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    Article  CAS  PubMed  Google Scholar 

  • Lemieux RU, Ratcliffe RM (1979) The azidonitration of tri-O-acetyl-d-galactal. Can J Chem 57:1244–1251

    Article  CAS  Google Scholar 

  • Li QZ, Yeh Y, Liu JJ, Feeney RE, Krishnan VV (2006) A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. J Chem Phys 124:204702

    Article  CAS  PubMed  Google Scholar 

  • Makowska J, Rodziewicz-Motowidło S, Bagińska K, Vila JA, Liwo A, Chmurzyński L, Scheraga HA (2006) Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proc Natl Acad Sci USA 103:1744–1749

    Article  CAS  PubMed  Google Scholar 

  • Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura SI (2005) Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7:877–880

    Article  CAS  PubMed  Google Scholar 

  • Meyer B, Möller H (2007) Conformation of glycopeptides and glycoproteins. Top Curr Chem 267:187–251

    Article  CAS  Google Scholar 

  • Mitchell SA, Pratt MR, Hruby VJ, Polt R (2001) Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J Org Chem 66:2327–2342

    Article  CAS  PubMed  Google Scholar 

  • Parody-Morreale A, Murphy KP, Dicera E, Fall R, DeVries AL, Gill SJ (1988) Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature 333:782–783

    Article  CAS  PubMed  Google Scholar 

  • Paulsen H, Adermann K (1989) Synthese von O-glycopeptid-sequenzen des N-terminus von interleukin 2. Liebigs Ann Chem 109:751–769

    Article  Google Scholar 

  • Rath A, Davidson AR, Deber CM (2005) The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding an recognition. Biopolymers (Pept Sci) 80:179–185

    Article  CAS  Google Scholar 

  • Raymond JA, Wilson P, DeVries AL (1989) Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci USA 86:881–885

    Article  CAS  PubMed  Google Scholar 

  • Schultz M, Kunz H (1993) Synthetic O-glycopeptides as model substrates for glycosyltransferases. Tetrahedron Ass 4:1205–1220

    Article  CAS  Google Scholar 

  • Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura SI (2004) Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew Chem 43:856–862

    Article  CAS  Google Scholar 

  • Yeh Y, Feeney RE (1996) Antifreeze proteins: structures and mechanisms of function. Chem Rev 96:601–617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from DFG (SFB 613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Sewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heggemann, C., Budke, C., Schomburg, B. et al. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids 38, 213–222 (2010). https://doi.org/10.1007/s00726-008-0229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0229-0

Keywords

Navigation