Skip to main content

Advertisement

Log in

An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

It is well known in the literature that an ensemble of classifiers obtains good performance with respect to that obtained by a stand-alone method. Hence, it is very important to develop ensemble methods well suited for bioinformatics data. In this work, we propose to combine the feature extraction method based on grouped weight with a set of amino-acid alphabets obtained by a Genetic Algorithm. The proposed method is applied for predicting DNA-binding proteins. As classifiers, the linear support vector machine and the radial basis function support vector machine are tested. As performance indicators, the accuracy and Matthews’s correlation coefficient are reported. Matthews’s correlation coefficient obtained by our ensemble method is ≈0.97 when the jackknife cross-validation is used. This result outperforms the performance obtained in the literature using the same dataset where the features are extracted directly from the amino-acid sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. 107 DNA-binding proteins and 196 non-DNA-binding proteins have a hit in the GO database.

  2. Implemented as in the OSU svm matlab toolbox

References

  • Aguero-Chapin G, Gonzalez-Diaz H, Molina R, Varona-Santos J, Uriarte E, Gonzalez-Diaz Y (2006) Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett 580:723–730

    Article  PubMed  CAS  Google Scholar 

  • Ahmad S, Sarai A (2005) PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics 6:33

    Article  PubMed  CAS  Google Scholar 

  • Ahmad S, Gromiha MM, Sarai A (2004) Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics 20:477–486

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj N, Langlois RE, Zhao G, Lu H (2005) Kernel-based machine learning protocol for predicting DNA-binding proteins. Nucleic Acids Res 33:6486–6493

    Article  PubMed  CAS  Google Scholar 

  • Caballero J, Fernandez L, Garriga M, Abreu JI, Collina S, Fernandez M (2007) Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J Mol Graph Model 26:166–178

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2006) Predicting membrane protein type by functional domain composition and pseudo amino acid composition. J Theor Biol 238:395–400

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007a) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition. J Theor Biol 248:377–381

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Tian YX, Zou XY, Cai PX, Mo JY (2006a) Using pseudo-amino acid composition and support vector machine to predict protein structural class. J Theor Biol 243:444–448

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhou X, Tian Y, Zou X, Cai P (2006b) Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal Biochem 357:116–121

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2000) Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem Biophys Res Commun 278:477–483

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins 43:246–255 (Erratum: ibid, 2001, 44:60)

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006a) Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347:150–157

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006b) Large-scale predictions of Gram-negative bacterial protein subcellular locations. J Proteome Res 5:3420–3428

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007a) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007b) Large-scale plant protein subcellular location prediction. J Cell Biochem 100:665–678

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007c) MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 360:339–345

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007d) Review: recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007e) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 357:633–640

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    Article  PubMed  CAS  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, London

    Google Scholar 

  • Diao Y, Li M, Feng Z, Yin J, Pan Y (2007) The community structure of human cellular signaling network. J Theor Biol 247:608–615

    Article  PubMed  Google Scholar 

  • Diao Y, Ma D, Wen Z, Yin J, Xiang J, Li M (2008) Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel–Ziv complexity. Amino Acids 34(1):111–117. doi:10.1007/s00726-007-0550-z

    Article  PubMed  CAS  Google Scholar 

  • Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept Lett 14:811–815

    Article  PubMed  CAS  Google Scholar 

  • Du P, Li Y (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics 7:518

    Article  PubMed  CAS  Google Scholar 

  • Duda RO, Hart PE, Stork G (2000) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  • Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids 34(1):103–109. doi:10.1007/s00726-007-0568-2

    Article  PubMed  CAS  Google Scholar 

  • Fawcett T (2004) ROC graphs: notes and practical considerations for researchers. HP Laboratories, technical report, Palo Alto

  • Feng ZP (2002) An overview on predicting the subcellular location of a protein. In Silico Biol 2:291–303

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Shao SH, Xiao X, Ding YS, Huang YS, Huang ZD, Chou KC (2005) Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids 28:373–376

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Perez-Bello A, Uriarte E, Gonzalez-Diaz Y (2006) QSAR study for mycobacterial promoters with low sequence homology. Bioorg Med Chem Lett 16:547–553

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Aguero-Chapin G, Varona J, Molina R, Delogu G, Santana L, Uriarte E, Podda G (2007a) 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function. J Comput Chem 28:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Perez-Castillo Y, Podda G, Uriarte E (2007b) Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices. J Comput Chem 28:1990–1995

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007c) Medicinal chemistry and Bioinformatics––current trends in drugs discovery with networks topological indices. Curr Top Med Chem 10:1015–1029

    Article  Google Scholar 

  • Guo YZ, Li M, Lu M, Wen Z, Wang K, Li G, Wu J (2006) Classifying G protein-coupled receptors and nuclear receptors based on protein power spectrum from fast Fourier transform. Amino Acids 30:397–402

    Article  PubMed  CAS  Google Scholar 

  • Hwang S, Gou Z, Kuznetsov IB (2007) DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 23(5):634–636

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Shanahan HP, Berman HM, Thornton JM (2003) Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acids Res 31:7189–7198

    Article  PubMed  CAS  Google Scholar 

  • Kedarisetti KD, Kurgan LA, Dick S (2006) Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 348:981–988

    Article  PubMed  CAS  Google Scholar 

  • Keil M, Exner TE, Brickmann J (2004) Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network. J Comput Chem 25:779–789

    Article  PubMed  CAS  Google Scholar 

  • Kittler J, Hatef M, Duin R, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 3:226–239

    Article  Google Scholar 

  • Kurgan LA, Stach W, Ruan J (2007) Novel scales based on hydrophobicity indices for secondary protein structure. J Theor Biol 248:354–366

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov IB, Gou Z, Li R, Hwang S (2006) Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins. Proteins 64:19–27

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Li FM, Li QZ (2007) Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach. Amino Acids 34:119–125

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Li QZ (2007a) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Li QZ (2007b) Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J Comput Chem 28:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang M, Chou KC (2005a) Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 336:737–739

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Yang J, Wang M, Xue L, Chou KC (2005b) Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24:385–389

    Article  PubMed  CAS  Google Scholar 

  • Liu DQ, Liu H, Shen HB, Yang J, Chou KC (2007) Predicting secretory protein signal sequence cleavage sites by fusing the marks of global alignments. Amino Acids 32:493–496

    Article  PubMed  CAS  Google Scholar 

  • Mondal S, Bhavna R, Mohan Babu R, Ramakumar S (2006) Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J Theor Biol 243:252–260

    Article  PubMed  CAS  Google Scholar 

  • Mundra P, Kumar M, Kumar KK, Jayaraman VK, Kulkarni BD (2007) Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recognit Lett 28:1610–1615

    Article  Google Scholar 

  • Nanni L, Lumini A (2006a) An ensemble of K-local hyperplane for predicting protein–protein interactions. Bioinformatics 22:1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Nanni L, Lumini A (2006b) MppS: an ensemble of support vector machine based on multiple physicochemical properties of amino-acids. Neurocomputing 69:1688–1690

    Article  Google Scholar 

  • Nanni L, Lumini A (2008a) A genetic approach for building different alphabets for peptide and protein classification. BMC Bioinformatics 9:45

    Article  PubMed  CAS  Google Scholar 

  • Nanni L, Lumini A (2008b) Combing ontologies and dipeptide composition for predicting DNA-binding proteins. Amino Acids. doi:10.1007/s00726-007-0016-3

  • Niu B, Cai YD, Lu WC, Zheng GY, Chou KC (2006) Predicting protein structural class with AdaBoost learner. Protein Pept Lett 13:489–492

    Article  PubMed  CAS  Google Scholar 

  • Ofran Y, Mysore V, Rost B (2007) Prediction of DNA-binding residues from sequence. Bioinformatics 23(13):347–353

    Article  CAS  Google Scholar 

  • Pan YX, Zhang ZZ, Guo ZM, Feng GY, Huang ZD, He L (2003) Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach. J Protein Chem 22:395–402

    Article  PubMed  CAS  Google Scholar 

  • Pu X, Guo J, Leung H, Lin Y (2007) Prediction of membrane protein types from sequences and position-specific scoring matrices. J Theor Biol 247:259–265

    Article  PubMed  CAS  Google Scholar 

  • Riis SK, Krogh A (1996) Improving prediction of protein secondary structure using neural networks and multiple sequence alignments. J Comput Biol 3:163–183

    PubMed  CAS  Google Scholar 

  • Shanahan HP, Garcia MA, Jones S, Thornton JM (2004) Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res 32:4732–4741

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2005a) Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition. Biochem Biophys Res Commun 337:752–756

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2005b) Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types. Biochem Biophys Res Commun 334:288–292

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2006) Ensemble classifier for protein fold pattern recognition. Bioinformatics 22:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007a) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Commun 364:53–59

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007b) Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng Des Sel 20:39–46

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007c) Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 355:1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007d) Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng Des Sel 20:561–567

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007e) PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007f) Signal-3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Commun 363:297–303

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007g) Using ensemble classifier to identify membrane protein types. Amino Acids 32:483–488

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007h) Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers 85:233–240

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2006) Fuzzy KNN for predicting membrane protein types from pseudo amino acid composition. J Theor Biol 240:9–13

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2007) Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 33:57–67

    Article  PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Cheng Y-M, Xie J (2007) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33:69–74

    Article  PubMed  CAS  Google Scholar 

  • Sun XD, Huang RB (2006) Prediction of protein structural classes using support vector machines. Amino Acids 30:469–475

    Article  PubMed  CAS  Google Scholar 

  • Tan F, Feng X, Fang Z, Li M, Guo Y, Jiang L (2007) Prediction of mitochondrial proteins based on genetic algorithm––partial least squares and support vector machine. Amino Acids 33:669–675

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya Y, Kinoshita K, Nakamura H (2004) Structure-based prediction of DNA-binding sites on proteins using the empirical preference of electrostatic potential and the shape of molecular surfaces. Proteins 55:885–894

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Terribilini M, Wu F, Jernigan RL, Dobbs D, Honavar V (2006) Predicting DNA-binding sites of proteins from amino acid sequence. BMC Bioinformatics 7:262

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Brown SJ (2006) Prediction of DNA-binding residues from sequence features. J Bioinform Comput Biol 4(6):1141–1158

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yang J, Liu GP, Xu ZJ, Chou KC (2004) Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition. Protein Eng Des Sel 17:509–516

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yang J, Chou KC (2005) Using string kernel to predict signal peptide cleavage site based on subsite coupling model. Amino Acids 28:395–402 (Erratum: ibid, 2005, 29:301)

    Article  PubMed  CAS  Google Scholar 

  • Wang SQ, Yang J, Chou KC (2006) Using stacked generalization to predict membrane protein types based on pseudo amino acid composition. J Theor Biol 242:941–946

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Li M, Li Y, Guo Y, Wang K (2006) Delaunay triangulation with partial least squares projection to latent structures: a model for G-protein coupled receptors classification and fast structure recognition. Amino Acids 32:277–283

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Chou KC (2007) Digital coding of amino acids based on hydrophobic index. Protein Pept Lett 14:871–875

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao S, Ding Y, Huang Z, Chen X, Chou KC (2005a) Using cellular automata to generate image representation for biological sequences. Amino Acids 28:29–35

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao S, Ding Y, Huang Z, Huang Y, Chou KC (2005b) Using complexity measure factor to predict protein subcellular location. Amino Acids 28:57–61

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Ding YS, Huang ZD, Chou KC (2006a) Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30:49–54

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Huang ZD, Chou KC (2006b) Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27:478–482

    Article  PubMed  CAS  Google Scholar 

  • Zhang TL, Ding YS (2007) Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids 33(4):623–629. doi:10.1007/s00726-007-0496-1

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Pan Q, Zhang HC, Shao ZC, Shi JY (2006a) Prediction protein homo-oligomer types by pseudo amino acid composition: approached with an improved feature extraction and naive Bayes feature fusion. Amino Acids 30:461–468

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Ding Y, Chou KC (2006b) Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence. Comput Biol Chem 30:367–371

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-H, Wang Z-H, Zhang Z-R, Wang Y-X (2006c) A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett 580:6169–6174

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Zhang YL, Yang HF, Zhao CH, Pan Q (2007) Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids. doi:10.1007/s00726-007-0010-9

  • Zhou GP (1998) An intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins 50:44–48

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Y. Fang for sharing the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loris Nanni.

Appendix: Matlab code

Appendix: Matlab code

The following function implements the base feature extraction method as detailed in “Materials and methods”:

figure a

The following rows implements the main of the system:

figure b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanni, L., Lumini, A. An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins. Amino Acids 36, 167–175 (2009). https://doi.org/10.1007/s00726-008-0044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0044-7

Keywords

Navigation