Skip to main content
Log in

Development of a Microfluidic NMR Device for Rapid and Quantitative Detection of Tumor Markers

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this work, a low-field microfluidic nuclear magnetic resonance (NMR) detection device was developed by fabricating a multi-layer microfluidic NMR probe. In combination with biological sensor technology based on immunomagnetic nanoparticles (IMNPs), the microfluidic NMR detection device was used to rapidly distinguish the concentration of target tumor markers. The experimental results show that the concentration of the target tumor markers can be differentiated with high sensitivity and specificity by the rate of the transverse relaxation time change ΔT2 even with interference from other biomarkers. A good linear relationship between ΔT2 and the concentration of the target tumor markers was also found, indicating that the microfluidic NMR device could be used for quantitative detection of tumor markers. Finally, the validity of the microfluidic NMR device for detecting target tumor markers was proved by comparison with a commercial cell counter, and the results detected by the two devices have a good consistency with a correlation coefficient of 0.996. In conclusion, the presented low-field microfluidic NMR device is a potential tool for the rapid and accurate quantitative detection of tumor markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.R. Frieden, I. Damon, B.P. Bell, T. Kenyon, S. Nichol, N. Engl. J. Med. 371, 1177 (2014)

    Article  Google Scholar 

  2. R. Etzioni, N. Urban, S. Ramsey, M. McIntosh, S. Schwartz, B. Reid, J. Radich, G. Anderson, L. Hartwell, Nat. Rev. Cancer 3, 243 (2003)

    Article  Google Scholar 

  3. C.A. Batt, Science 316, 1579 (2007)

    Article  Google Scholar 

  4. E.W.M. Kemna, L.I. Segerink, F. Wolbers, I. Vermes, A. van den Berg, Analyst 138, 4585 (2013)

    Article  ADS  Google Scholar 

  5. P. Liu, K. Skucha, M. Megens, B. Boser, IEEE. Trans. Magn. 47, 3449 (2011)

    Article  ADS  Google Scholar 

  6. S.J. Osterfeld, H. Yu, R.S. Gaster, S. Caramuta, L. Xu, S.J. Han, D.A. Hall, R.J. Wilson, S.H. Sun, R.L. White, R.W. Davis, N. Pourmand, S.X. Wang, Proc. Natl. Acad. Sci. USA 105, 20637 (2008)

    Article  ADS  Google Scholar 

  7. M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H.C. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, W.F. Butler, Nat. Biotechnol. 23, 83 (2005)

    Article  Google Scholar 

  8. M. Safavieh, M.U. Ahmed, E. Sokullu, A. Ng, L. Braescu, M. Zourob, Analyst 139, 482 (2014)

    Article  ADS  Google Scholar 

  9. J.O. Esteves-Villanueva, H. Trzeciakiewicz, S. Martic, Analyst 139, 2823 (2014)

    Article  ADS  Google Scholar 

  10. J.M. Perez, L. Josephson, T. O’Loughlin, D. Hogemann, R. Weissleder, Nat. Biotechnol. 20, 816 (2002)

    Article  Google Scholar 

  11. D. Hogemann, V. Ntziachristos, L. Josephson, R. Weissleder, Bioconjug. Chem. 13, 116 (2002)

    Article  Google Scholar 

  12. M.D. Robinson, I. Mishra, S. Deodhar, V. Patel, K.V. Gordon, R. Vintimilla, K. Brown, L. Johnson, S. O’Bryant, D.P. Cistola, J. Transl. Med. 15, 19 (2017)

    Article  Google Scholar 

  13. Z.X. Luo, L. Fox, M. Cummings, T.J. Lowery, E. Daviso, Trends Anal. Chem. 83, 94 (2016)

    Article  Google Scholar 

  14. D.P. Cistola, M.D. Robinson, Trends Anal. Chem. 83, 53 (2016)

    Article  Google Scholar 

  15. H.Y. Chen, Y. Kim, P. Nath, C. Hilty, J. Magn. Reson. 255, 100 (2015)

    Article  ADS  Google Scholar 

  16. V. Demas, J.L. Herberg, V. Malba, A. Bernhardt, L. Evans, C. Harvey, S.C. Chinn, R.S. Maxwell, J. Reimer, J. Magn. Reson. 189, 121 (2007)

    Article  ADS  Google Scholar 

  17. Z. Xu, S.J. Zhao, P. Guo, Appl. Magn. Reson. 44, 1405 (2013)

    Article  Google Scholar 

  18. S.S. Zalesskiy, E. Danieli, B. Bluemich, V.P. Ananikov, Chem. Rev. 114, 5641 (2014)

    Article  Google Scholar 

  19. X. Zheng, Y. Qiang, Appl. Magn. Reson. 47, 175 (2016)

    Article  Google Scholar 

  20. R.S. Lu, X.L. Zhou, W.P. Wu, Y.Y. Zhang, Z.H. Ni, Appl. Magn. Reson. 45, 461 (2014)

    Article  Google Scholar 

  21. T.L. Peck, R.L. Magin, J. Kruse, M. Feng, IEEE. Trans. Bio-med. Eng. 41, 706 (1994)

    Article  Google Scholar 

  22. J.E. Stocker, T.L. Peck, A.G. Webb, M. Feng, R.L. Magin, IEEE. Trans. Bio-med. Eng. 44, 1122 (1997)

    Article  Google Scholar 

  23. J.D. Trumbull, I.K. Glasgow, D.J. Beebe, R.L. Magin, IEEE. Trans. Bio-med. Eng. 47, 3 (2000)

    Article  Google Scholar 

  24. J. Dechow, A. Forchel, T. Lanz, A. Haase, Microelectron. Eng. 53, 517 (2000)

    Article  Google Scholar 

  25. C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P.A. Besse, A. Daridon, E. Verpoorte, N.F. de Rooij, R.S. Popovic, J. Magn. Reson. 164, 242 (2003)

    Article  ADS  Google Scholar 

  26. C. Massin, C. Boero, F. Vincent, J. Abenhaim, P.A. Besse, R.S. Popovic, Sens. Actuat. A Phys. 97–98, 280 (2002)

    Article  Google Scholar 

  27. H. Wensink, F. Benito-Lopez, D.C. Hermes, W. Verboom, H.J. Gardeniers, D.N. Reinhoudt, D.B.A. Van, Lab. Chip 5, 280 (2005)

    Article  Google Scholar 

  28. T.F. Kong, W.K. Peng, T.D. Luong, N.T. Nguyen, J. Han, Lab. Chip 12, 287 (2012)

    Article  Google Scholar 

  29. D.L. Olson, M.E. Lacey, J.V. Sweedler, Anal. Chem. 70, 645 (1998)

    Article  Google Scholar 

  30. T.L. Peck, R.L. Magin, P.C. Lauterbur, J. Magn. Reson. Ser. B. 108, 114 (1995)

    Article  Google Scholar 

  31. H. Lee, T.J. Yoon, J.L. Figueiredo, F.K. Swirski, R. Weissleder, Proc. Natl. Acad. Sci. USA 106, 12459 (2009)

    Article  ADS  Google Scholar 

  32. J.A. Rogers, R.J. Jackman, G.M. Whitesides, D.L. Olson, J.V. Sweedler, Appl. Phys. Lett. 70, 2464 (1997)

    Article  ADS  Google Scholar 

  33. V. Malba, R. Maxwell, L.B. Evans, A.E. Bernhardt, M. Cosman, K. Yan, Biomed. Microdevices 5, 21 (2003)

    Article  Google Scholar 

  34. C.H. Ahn, M.G. Allen, IEEE. Trans. Ind. Electron. 45, 866 (1998)

    Article  Google Scholar 

  35. L.O. Sillerud, A.F. McDowell, N.L. Adolphi, R.E. Serda, D.P. Adams, M.J. Vasile, T.M. Alam, J. Magn. Reson. 181, 181 (2006)

    Article  ADS  Google Scholar 

  36. R.C. Meier, J. Höfflin, V. Badilita, U. Wallrabe, J.G. Korvink, J. Micromech. Microeng. 24, 045021 (2014)

    Article  ADS  Google Scholar 

  37. K. Kratt, V. Badilita, T. Burger, J.G. Korvink, U. Wallrabe, J. Micromech. Microeng. 20, 837 (2010)

    Article  Google Scholar 

  38. S. He, F. Chen, Q. Yang, K. Liu, C. Shan, H. Bian, H. Liu, X. Meng, J. Si, Y. Zhao, X. Hou, J. Micromech. Microeng. 22, 105017 (2012)

    Article  ADS  Google Scholar 

  39. Y. Chen, Y. Xianyu, Y. Wang, X. Zhang, R. Cha, J. Sun, X. Jiang, ACS Nano 9, 3184 (2015)

    Article  Google Scholar 

  40. L.-S. Jang, H.-K. Keng, Biomed. Microdevices 10, 203 (2008)

    Article  Google Scholar 

  41. Y. Zhao, Y. Yao, M. Xiao, Y. Chen, C.C.C. Lee, L. Zhang, K.X. Zhang, S. Yang, M. Gu, Food Control 34, 436 (2013)

    Article  Google Scholar 

  42. C. Min, H. Shao, M. Liong, T.J. Yoon, R. Weissleder, H. Lee, ACS Nano 6, 6821 (2012)

    Article  Google Scholar 

  43. J. Taylor-Papadimitriou, J. Burchell, D.W. Miles, M. Dalziel, Biochim. Biophys. Acta 1455, 301 (1999)

    Article  Google Scholar 

  44. S. Nath, P. Mukherjee, Trends Mol. Med. 20, 332 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial supports from National Key Scientific Instrument and Equipment Development Project of China under Grant no. 51627808, National Natural Science Foundation of China under Grant no. 51605089, and Jiangsu Province National Natural Science Foundation of China under Grant no. BK20150609.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongsheng Lu or Hong Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Lei, P., Yang, Q. et al. Development of a Microfluidic NMR Device for Rapid and Quantitative Detection of Tumor Markers. Appl Magn Reson 50, 357–370 (2019). https://doi.org/10.1007/s00723-018-1071-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1071-5

Navigation