Skip to main content
Log in

ELDOR-detected NMR at Q-Band

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In recent years, electron–electron double resonance detected nuclear magnetic resonance (EDNMR) has gained considerable attention as a pulsed electron paramagnetic resonance technique to probe hyperfine interactions. Most experiments published so far were performed at W-band frequencies or higher, as at lower frequencies detection of weakly coupled low-γ nuclei is hampered by the presence of a central blind spot, which occurs at zero frequency. In this article we show that EDNMR measurements and a meaningful data analysis is indeed possible at intermediate microwave frequencies (Q-band, 34 GHz), once experimental parameters have been optimized. With highly selective detection pulses and Gaussian shaped electron–electron double resonance (ELDOR) pulses it is possible to detect low-γ nuclei coupled to paramagnetic Mn2+. Weakly coupled 14N resonances, which are separated from the zero frequency by only 2.8 MHz, were readily detected. In systems where different spin active nuclei are coupled to the electron spin, particular care has to be taken when using higher powered ELDOR pulses, as combination frequencies from the two nuclei (∆m S = ±1, ∆m I,1 = ±1, ∆m I,2 = ±1) can lead to severe line broadening and complicated EDNMR spectra. We also compare the EDNMR spectra of 13C-labeled Mn–DOTA to 13C-Mims electron–nuclear double resonance to get a better insight into the similarities and differences in the results of the two techniques for 13C hyperfine coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Schosseler, T. Wacker, A. Schweiger, Chem. Phys. Lett. 224, 319 (1994)

    Article  ADS  Google Scholar 

  2. G. Jeschke, H.W. Spiess, Chem. Phys. Lett. 293, 9 (1998)

    Article  ADS  Google Scholar 

  3. H. Mino, T. Ono, Appl. Magn. Reson. 23, 571 (2003)

    Article  Google Scholar 

  4. L. Kulik, B. Epel, J. Messinger, W. Lubitz, Photosynth. Res. 84, 347 (2005)

    Article  Google Scholar 

  5. N. Cox, W. Lubitz, A. Savitsky, Mol. Phys. 111, 2788 (2013)

    Article  ADS  Google Scholar 

  6. N. Cox, A. Nalepa, M. E. Pandelia, W. Lubitz, A. Savitsky, in Methods Enzymol., 1st edn. (Elsevier Inc., 2015), pp. 211–249

  7. D. Goldfarb, eMagRes 6, 101 (2017)

    Article  Google Scholar 

  8. N. Cox, A. Nalepa, W. Lubitz, A. Savitsky, J. Magn. Reson. 280, 63 (2017)

    Article  ADS  Google Scholar 

  9. S. Un, Inorg. Chem. 52, 3803 (2013)

    Article  Google Scholar 

  10. E.M. Bruch, M.T. Warner, S. Thomine, L.C. Tabares, S. Un, J. Phys. Chem. B 119, 13515 (2015)

    Article  Google Scholar 

  11. S. Un, E.M. Bruch, Inorg. Chem. 54, 10422 (2015)

    Article  Google Scholar 

  12. A. Potapov, B. Epel, D. Goldfarb, J. Chem. Phys. 128, 052320/1–052320/10 (2008)

  13. M. Florent, I. Kaminker, V. Nagarajan, D. Goldfarb, J. Magn. Reson. 210, 192 (2011)

    Article  ADS  Google Scholar 

  14. I. Kaminker, T.D. Wilson, M.G. Savelieff, Y. Hovav, H. Zimmermann, Y. Lu, D. Goldfarb, J. Magn. Reson. 240, 77 (2014)

    Article  ADS  Google Scholar 

  15. M. Ramirez Cohen, N. Mendelman, M. Radoul, T.D. Wilson, M.G. Savelieff, H. Zimmermann, I. Kaminker, A. Feintuch, Y. Lu, D. Goldfarb, Inorg. Chem. 56, 6163 (2017)

    Article  Google Scholar 

  16. L. Rapatskiy, N. Cox, A. Savitsky, W.M. Ames, J. Sander, M.M. Nowaczyk, M. Rögner, A. Boussac, F. Neese, J. Messinger, W. Lubitz, J. Am. Chem. Soc. 134, 16619 (2012)

    Article  Google Scholar 

  17. A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242, 203 (2014)

    Article  ADS  Google Scholar 

  18. M. Fittipaldi, I. García-Rubio, F. Trandafir, I. Gromov, A. Schweiger, A. Bouwen, S. Van Doorslaer, J. Phys. Chem. B 112, 3859 (2008)

    Article  Google Scholar 

  19. S. Zamani, V. Meynen, A.-M. Hanu, M. Mertens, E. Popovici, S. Van Doorslaer, P. Cool, Phys. Chem. Chem. Phys. 11, 5823 (2009)

    Article  Google Scholar 

  20. N.V. Nagy, S. Van Doorslaer, T. Szabó-Plánka, S. Van Rompaey, A. Hamza, F. Fülöp, G.K. Tóth, A. Rockenbauer, Inorg. Chem. 51, 1386 (2012)

    Article  Google Scholar 

  21. M. Flores, A.G. Agrawal, M. Van Gastel, W. Gärtner, W. Lubitz, J. Am. Chem. Soc. 130, 2402 (2008)

    Article  Google Scholar 

  22. S. Van Doorslaer, E. Vinck, Phys. Chem. Chem. Phys. 9, 4620 (2007)

    Article  Google Scholar 

  23. A. Aliabadi, R. Zaripov, K. Salikhov, V. Voronkova, E. Vavilova, M.A. Abdulmalic, T. Rueffer, B. Buechner, V. Kataev, J. Phys. Chem. B 119, 13762 (2015)

    Article  Google Scholar 

  24. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)

    Google Scholar 

  25. B. Bleaney, R.S. Rubins, Proc. Phys. Soc. 77, 103 (1961)

    Article  ADS  Google Scholar 

  26. E. Meirovitch, R. Poupko, J. Phys. Chem. 82, 1920 (1978)

    Article  Google Scholar 

  27. O. Schiemann, R. Carmieli, D. Goldfarb, Appl. Magn. Reson. 31, 543 (2007)

    Article  Google Scholar 

  28. K. Keller, M. Zalibera, M. Qi, V. Koch, J. Wegner, H. Hintz, A. Godt, G. Jeschke, A. Savitsky, M. Yulikov, Phys. Chem. Chem. Phys. 18, 25120 (2016)

    Article  Google Scholar 

  29. A. Collauto, S. Mishra, A. Litvinov, H.S. Mchaourab, D. Goldfarb, Structure 25, 1264 (2017)

    Article  Google Scholar 

  30. J.F. Desreux, Inorg. Chem. 19, 1319 (1980)

    Article  Google Scholar 

  31. L. Lumata, M. Merritt, C. Malloy, A.D. Sherry, Z. Kovács, Appl. Magn. Reson. 43, 69 (2012)

    Article  Google Scholar 

  32. B. Epel, D. Arieli, D. Baute, D. Goldfarb, J. Magn. Reson. 164, 78 (2003)

    Article  ADS  Google Scholar 

  33. F. Neese, Wiley interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)

    Article  Google Scholar 

  34. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    Article  ADS  Google Scholar 

  35. V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998)

    Article  Google Scholar 

  36. S. Wang, T.D. Westmoreland, Inorg. Chem. 48, 719 (2009)

    Article  Google Scholar 

  37. T. Wacker, G.A. Sierra, A. Schweiger, Isr. J. Chem. 32, 305 (1992)

    Article  Google Scholar 

  38. H.Y. Vincent Ching, P. Demay-Drouhard, H.C. Bertrand, C. Policar, L.C. Tabares, S. Un, Phys. Chem. Chem. Phys. 17, 23368 (2015)

    Article  Google Scholar 

  39. S. Sinnecker, F. Neese, L. Noodleman, W. Lubitz, J. Am. Chem. Soc. 126, 2613 (2004)

    Article  Google Scholar 

  40. B.E. Sturgeon, J.A. Ball, D.W. Randall, R.D. Britt, J. Phys. Chem. 98, 12871 (1994)

    Article  Google Scholar 

  41. P. Manikandan, R. Carmieli, T. Shane, A.J. Kalb, D. Goldfarb, J. Am. Chem. Soc. 122, 3488 (2000)

    Article  Google Scholar 

  42. X. Tan, M. Bernardo, H. Thomann, C.P. Scholes, J. Chem. Phys. 102, 2675 (1995)

    Article  ADS  Google Scholar 

  43. D. Baute, D. Goldfarb, J. Phys. Chem. A 109, 7865 (2005)

    Article  Google Scholar 

  44. F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds. Studies in Inorganic Chemistry series, Chap. 6 (Elsevier, 1992), pp. 189–217

  45. H.L. Flanagan, D.J. Singel, J. Chem. Phys. 87, 5605–5616 (1987)

    Article  ADS  Google Scholar 

  46. A. Collauto, A. Feintuch, M. Qi, A. Godt, T. Meade, D. Goldfarb, J. Magn. Reson. 263, 156 (2016)

    Article  ADS  Google Scholar 

  47. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (CRC 902—Molecular Principles of RNA-based Regulation). AMB acknowledges the Goethe International (GOIN) postdoctoral fellowship program and the Royal Society—EPSRC Dorothy Hodgkin fellowship program for generous support. We are grateful to Prof. Christiane Timmel and Dr William Myers at the Centre of Advanced Electron Spin Resonance (CAESR), Oxford University for access to their facilities for some of the aforementioned experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Prisner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hetzke, T., Bowen, A.M. & Prisner, T.F. ELDOR-detected NMR at Q-Band. Appl Magn Reson 48, 1375–1397 (2017). https://doi.org/10.1007/s00723-017-0927-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0927-4

Navigation