Skip to main content
Log in

Sb Magnetic Resonance as a Local Probe for the Gap Formation in the Correlated Semimetal FeSb2

Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We report on a comparative study of the narrow-band semimetals FeSb2 and its structural homologue RuSb2 by means of 121,123Sb nuclear quadrupole (NQR) and nuclear magnetic resonance (NMR) spectroscopy. From NQR for both compounds two temperature regimes could be identified by use of 123(1/T 1) measurements. Above 40 K a conventional activated behavior (with Δ/k B ≅ 400 K for FeSb2) dominates in 123(1/T 1), whereas below 40 K in both systems an unconventional 123(1/T 1) behavior with a smooth maximum at around 10 K is observed. To analyze this behavior, we propose the presence of T-dependent in-gap states forming a narrow energy level of localized spins with S = ½ near the bottom of the conduction band. These states might have originated from an inherent Sb-deficiency in both compounds. This model enables us to fit the 123(1/T 1) data in the entire investigated temperature range (2–200 K) for FeSb2. Ab initio band structure calculations reveal more than a factor of two larger Δ value for RuSb2 as compared with FeSb2. This results in dissimilar behavior of 123(1/T 1) in FeSb2 and RuSb2 above 40 K evidencing the inefficiency of thermal activation of electrons over the large energy gap at T ≤ 300 K in RuSb2 and dominating of quadrupole relaxation channel in RuSb2 in this temperature range caused by phonon relaxation involving two-phonon (Raman) scattering. In addition, extra wide range field-sweep NMR measurements are performed at various temperatures on FeSb2 and RuSb2. The complex broad spectra could be modeled and from the shift of the 121Sb central transition the 3d component of the shift K 3d (T) could be extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Paschen, in Thermoelectrics Handbook, ed. by D.M. Rowe (CRC Press, Boca Raton FL, 2006), chapt. 15

  2. A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, F. Steglich, Europhys. Lett. 80, 17008 (2007)

    Article  ADS  Google Scholar 

  3. A. Bentien, G.K.H. Madsen, S. Johnsen, B.B. Iversen, Phys. Rev. B 74, 205105 (2006)

    Article  ADS  Google Scholar 

  4. C. Petrovic, Y. Lee, T. Vogt, N.Dj Lazarov, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 72, 045103 (2005)

    Article  ADS  Google Scholar 

  5. A. Perucchi, L. Degiorgi, R. Hu, C. Petrovic, V.F. Mitrović, Euro. Phys. J. B 54, 175 (2006)

    Article  ADS  Google Scholar 

  6. K. Nakamura, Y. Kitaoka, K. Asayama, T. Takabatake, G. Nakamoto, H. Tanaka, H. Fujii, Phys. Rev. B 53, 6385 (1996)

    Article  ADS  Google Scholar 

  7. M. Jaime, R. Movshovich, G.R. Stewart, W.P. Beyermann, M.G. Berisso, M.F. Hundley, P.C. Canfield, J.L. Sarrao, Nature 405(6783), 160–163 (2000). doi:10.1038/35012027

    Article  ADS  Google Scholar 

  8. A.P. Reyes, R.H. Heffner, P.C. Canfield, J.D. Thompson, Z. Fisk, Phys. Rev. B 49, 16321 (1994)

    Article  ADS  Google Scholar 

  9. A.A. Gippius, M. Baenitz, A.K. Rajarajan, E.M. Bruening, K. Okhotnikov, R. Walstedt, A. Strydom, J. Mydosh, F. Steglich, J. Phys: Conf. Ser. 150, 042040 (2009)

    ADS  Google Scholar 

  10. M. Corti, S. Aldrovandi, M. Fanciulli, F. Tabak, Phys. Rev. B 67, 172408 (2003)

    Article  ADS  Google Scholar 

  11. A.A. Gippius, K.S. Okhotnikov, M. Baenitz, A.V. Shevelkov, Solid State Phenom. 152–153, 287 (2009)

    Article  Google Scholar 

  12. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Austria, 2001). ISBN:3-9501031-1-2

  13. T. Koyama, Y. Fukui, Y. Nagao, H. Nakamura, T. Kohara, Phys. Rev. B 76, 073203 (2007)

    Article  ADS  Google Scholar 

  14. K. Nishiyama, D. Riegel, Hyperfine Interact. 4, 490 (1978)

    Article  ADS  Google Scholar 

  15. J. Chepin, J.H. Ross, J. Phys. Condens. Matter 3, 8103 (1991)

  16. R.E. Walstedt, J.H. Wernick, V. Jaccarino, Phys. Rev. 162, 301 (1967)

    Article  ADS  Google Scholar 

  17. B.C. Sales, E.C. Jones, B.C. Chakoumakos, J.A. Fernandez-Baca, H.E. Harmon, J.W. Sharp, E.H. Volckmann, Phys. Rev. B 50, 8207 (1994)

    Article  ADS  Google Scholar 

  18. M. Takigawa, H. Yasuoka, Y. Kitaoka, T. Tanaka, H. Nozaki, Y. Ishizawa, J. Phys. Soc. Jpn. 50, 2525 (1981)

    Article  ADS  Google Scholar 

  19. T.H. Su, C.P. Fang, C.-S. Lue, J. Magn. Magn. Mater. 310, e38 (2007)

    Article  ADS  Google Scholar 

  20. T. Caldwell, A.P. Reyes, W.G. Moulton, P.L. Kuhns, M.J.R. Hoch, P. Schlottmann, Z. Fisk, Phys. Rev. B 75, 075106 (2007)

    Article  ADS  Google Scholar 

  21. N.E. Sluchanko, A.A. Volkov, V.V. Glushkov, B.P. Gorshunov, S.V. Demishev, M.V. Kondrin, A.A. Pronin, N.A. Samarin, JETP 88, 533 (1999)

    Article  ADS  Google Scholar 

  22. N.E. Sluchanko, V.V. Glushkov, S.V. Demishev, A.A. Menovsky, L. Weckhuysen, V.V. Moshchalkov, Phys. Rev. B 65, 064404 (2002)

    Article  ADS  Google Scholar 

  23. Peter S. Riseborough, Phys. Rev. B 68, 235213 (2003)

    Article  ADS  Google Scholar 

  24. P. Vonlanthen, E. Felder, L. Degiorgi, H.R. Ott, D.P. Young, A.D. Bian-chi, Z. Fisk, Phys. Rev. B 62, 10076 (2000)

    Article  ADS  Google Scholar 

  25. Hu Rongwei, V.F. Mitrovic, C. Petrovic, Phys. Rev. B 74, 195130 (2006)

    Article  ADS  Google Scholar 

  26. A.A. Gippius, VYu. Verchenko, A.V. Tkachev, N.E. Gervits, C.-S. Lue, A.A. Tsirlin, N. Büttgen, W. Krätschmer, M. Baenitz, M. Shatruk, A.V. Shevelkov, Phys. Rev. B 89, 104426 (2014)

    Article  ADS  Google Scholar 

  27. F. Hulliger, Nature 198, 1082 (1963)

    Article  ADS  Google Scholar 

  28. R. Mieher, Phys. Rev. 125, 1537 (1962)

    Article  ADS  Google Scholar 

  29. J. van Kranendonk, Physica 20, 781 (1954)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by joint Russian–Taiwan Grant RFBR-NSC no. 12-03-92002-NSC_a (101-2923-M-006-001-MY2) and by Russian Science Foundation, grant no. 14-13-00089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gippius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gippius, A.A., Baenitz, M., Okhotnikov, K.S. et al. Sb Magnetic Resonance as a Local Probe for the Gap Formation in the Correlated Semimetal FeSb2 . Appl Magn Reson 45, 1237–1252 (2014). https://doi.org/10.1007/s00723-014-0592-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0592-9

Keywords

Navigation