Skip to main content
Log in

Utilitarian population ethics and births timing

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

Births postponement is a key demographic trend of the last decades. To examine its social desirability, we study how utilitarian criteria rank histories equal on all dimensions except the age at which individuals give birth to their children. We develop a T-period dynamic overlapping generations economy with a fixed living space, where individual welfare is increasing in the available space per head, and where agents have children in one out of two fertility periods. When comparing finite histories with an equal total number of life-periods, classical, average and critical-level utilitarian criteria select the same fertility timing, i.e. the one leading to the most smoothed population path. When comparing infinite histories with stationary population sizes, utilitarian criteria may select different birth timings, depending on individual utility functions. Those results are compared with the ones obtained when agents value coexistence time with their descendants. Finally, we identify conditions under which a shift from an early births regime to a late births regime is socially desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For other utilitarian criteria under a variable population, see Blackorby et al. (2005).

  2. Source: The Human Fertility database (2012).

  3. See Pestieau and Ponthiere (2014) for the study of the optimal fertility profile in an economy with physical capital accumulation, in line with Samuelson (1975).

  4. See Cramer et al. (2004) on the negative effects of congestion on individual welfare.

  5. Indeed, as noticed by Marshall (1890), the existence of phases of increasing returns to scale for non-natural production factors, if combined with a sufficiently large amount of natural resources, could make the “population problem” disappear, except if a too large population density reduces individual welfare through congestion.

  6. Indeed, adding a person to the population would, under a fixed temporal utility \(u_{s}=\alpha \), necessarily increase the sum of individual utilities. However, once \(u(q_{s})\) is decreasing in the population size, adding a person to the population does not necessarily increase the sum of individual utilities, leading to a trade-off between the quantity of life (i.e. the population size) and the quality of life (i.e. \(u(q_{s})\)).

  7. Note that Q can also be interpreted as an amount of fully renewable natural resource, in the sense that, at the beginning of each period, an amount Q of the resource is available for all living persons. However, we prefer, throughout this paper, to keep the spatial interpretation of Q, since its constancy over time would amount, under the alternative interpretation, to assume a constant consumption technology for the fully renewable resource, which is a strong assumption.

  8. By “finite histories”, we mean histories with a finite total number of periods lived by (some) individuals. Note that it remains true that, in our OLG economy, time goes from \(-T\) to \(\infty \), despite of the fact that only a finite number of those periods are lived by some persons.

  9. Note that the nature of the intercept of the temporal utility function \( \alpha \) is quite different from the nature of the critical utility level for continuing existence \(\hat{u}\). Indeed, whereas the former is a purely descriptive parameter, capturing how individuals value longevity with respect to congestion, the latter is an ethical parameter, which reflects the preferences of the social planner.

  10. Note that the formulas are here shown for the case where T is an even natural number. Obviously, similar formulas can be derived for the case where T is an odd number.

  11. Simulations cover the first 1000 cohorts, but cumulated social welfare is stabilized far before the end of that time interval.

  12. On the origins of average utilitarianism, Gottlieb (1945) refers to Mill (1859), who was in favour of birth control in the name of social welfare maximization. Note, however, that the distinction between total and average welfare dates back to Sidgwick (1874). Critical-level utilitarianism was introduced by Blackorby and Donaldson (1984).

  13. That assumption is indeed necessary to have a constant long-run population when \(n=0\) and \(m=1\). Otherwise, if T is an odd natural number, then the population exhibits a two-period cycle in the long-run.

  14. That exclusive focus on the stationary equilibrium involves some simplifications: it amounts to extract the population problem from the time dimension. But it allows us to compare non-finite histories, since that stationary equilibrium (stationary population and space per head) will, by definition, reproduce itself forever.

  15. Note that we focus here only on the stationary equilibrium, and, hence, we neglect deliberately the transition towards that stationary equilibrium. Taking the transition into account would require to select a pure discount rate. Given that our focus is not on intergenerational justice—but only on the social desirability of births postponement—, we prefer to focus only on the stationary equilibrium without considering the sensitivity of our results to the choice of a pure discount rate.

  16. Assumption A12 amounts to assume that agents care about coexistence with their descendants, and not with their ancestors. That assumption is made for analytical simplicity. Note that adding a concern for coexistence with both descendants and ancestors would only reinforce our results towards making early births more socially desirable than late births.

References

  • Arrhenius G (2008) Life extension versus replacement. J Appl Philos 25(3):211–227

    Article  Google Scholar 

  • Arrhenius G (2013) Population ethics. Oxford University Press, New York (forthcoming)

  • Arrhenius G, Bykvist K (1995) Interpersonal compensation and moral duties to future generations: moral aspects of energy use. In: Uppsala prints and preprints in philosophy, vol 21. Department of Philosophy, Uppsala University, Uppsala

  • Bentham J (1789) Introduction to the principles of morals and legislation. In: Warnock M (ed) Utilitarianism (1962). Fontana Press, London

  • Blackorby C, Donaldson D (1984) Social criteria for evaluating population change. J Public Econ 25:13–33

    Article  Google Scholar 

  • Blackorby C, Bossert W, Donaldson D (2005) Population issues in social choice theory. welfare economics and ethics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Botero G (1588) Della Cause della Grandezza della Citta. Popul Dev Rev (reprinted partly, 1985) 11(2):335–340

  • Boucekkine R, Fabbri G (2013) Assessing Parfit’s repugnant conclusion within a canonical endogenous growth set-up. J Popul Econ 26(2):751–767

    Article  Google Scholar 

  • Bouccekine R, Fabbri G, Gozzi F (2014) Egalitarianism under population change: age structure does matter. J Math Econ 55(C):86–100

  • Boulding K (1966) Earth as a spaceship. Washington State University Commitee on Space Sciences. http://www.colorado.edu/econ/Kenneth.Boulding/spaceship-earth.html

  • Broome J (1992) Counting the cost of global warming. The White Horse Press, Cambridge

    Google Scholar 

  • Broome J (2004) Weighing lives. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bykvist K (2007) The good, the bad and the ethically neutral. Econ Philos 23:97–105

    Article  Google Scholar 

  • Cantillon R (1755) Essay on the nature of trade in general. INED (new edition, 1952), Paris

  • Conde-Ruiz JI, Gimenez E, Perez-Nievas M (2010) Millian efficiency with endogenous fertility. Rev Econ Stud 77:154–187

    Article  Google Scholar 

  • Cramer V, Torgersen S, Kringlen E (2004) Quality of life in a city: the effect of population density. Soc Indic Res 69:103–116

    Article  Google Scholar 

  • Golosov M, Jones L, Tertilt M (2007) Efficiency with endogenous population growth. Econometrica 75(4):1039–1071

    Article  Google Scholar 

  • Gottlieb M (1945) The theory of optimum population for a closed economy. J Polit Econ 53:289–316

    Article  Google Scholar 

  • Hardin G (1968) The tragedy of the commons revisited. Science (28 November1968) 166:1103–1107

  • Human Fertility database (2012) Human Fertility database: Max Planck Institute for Demographic Research (Germany) and Vienna Institute of Demography (Austria). http://www.humanfertility.org. Accessed April 2012

  • Hurka T (1983) Value and population size. Ethics 93:496–507

    Article  Google Scholar 

  • Jouvet PA, Ponthiere G (2011) Survival, reproduction and congestion: the spaceship problem re-examined. J Bioecon 13(3):233–273

    Article  Google Scholar 

  • Malthus TR (1798) Essay on the principle of population. Pelican Books, London (reprint 1970)

  • Marshall A (1890) Principles of economics. McMillan, London

    Google Scholar 

  • Mill JS (1859) On liberty. Reprinted in M. Warnock (ed) (1962) Utilitarianism, on liberty and essay on bentham. Fontana Press, London

  • Ng Y-K (1986) Social criteria for evaluating population change: an alternative to the Blackorby–Donaldson criterion. J Public Econ 29:375–381

    Article  Google Scholar 

  • Parfit D (1984) Reasons and persons. Oxford University Press, Oxford

    Google Scholar 

  • Pestieau P, Ponthiere G (2014) Optimal fertility along the lifecycle. Econ Theory 55(1):185–224

    Article  Google Scholar 

  • Ramsey FP (1928) A mathematical theory of saving. Econ J 38:543–549

    Article  Google Scholar 

  • Renström T, Spataro L (2011) The optimum growth rate for population under critical-level utilitarianism. J Popul Econ 24(3):181–201

    Article  Google Scholar 

  • Samuelson P (1975) The optimum growth rate for population. Int Econ Rev 16(3):539–544

    Article  Google Scholar 

  • Sidgwick H (1874) The methods of ethics. McMillan, London

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Gustaf Arrhenius, John Broome, David de la Croix, Jean-Pierre Drugeon, Jurgen de Wispelaere, Marc Fleurbaey, Axel Gosseries, Lucia Granelli, John Knowles, Holger Strulik, Daniel Weinstock, Andrew Williams as well as three anonymous referees, for their comments and suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Ponthiere.

Appendix

Appendix

1.1 Proof of Proposition 1

Consider two lifetime-equal histories \(\left\{ T,n,0\right\} \) and \(\left\{ T,0,m\right\} \). In history \(\left\{ T,n,0\right\} \), total welfare for all individuals born at \(t\ge 0\) can be written as:

$$\begin{aligned}&nN_{-1}T\alpha +nN_{-1}\left[ \frac{Q}{N_{-(T-1)}+ \cdots +N_{-1}(1+n)}\right] ^{\sigma } \\&\quad +\,nN_{-1}\left[ \frac{Q}{N_{-(T-2)}+ \cdots +N_{-1}(1+n+n^{2})}\right] ^{\sigma } \\&\quad + \cdots +nN_{-1}\left[ \frac{Q}{N_{-1}\left( n+n^{2}+ \cdots +n^{T+1}\right) } \right] ^{\sigma } \\&\quad +\,n^{2}N_{-1}T\alpha +n^{2}N_{-1}\left[ \frac{Q}{ N_{-(T-2)}+ \cdots +N_{-1}(1+n+n^{2})}\right] ^{\sigma } \\&\quad +\,n^{2}N_{-1}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +N_{-1}\left( 1+n+n^{2}+n^{3}\right) }\right] ^{\sigma } \\&\quad + \cdots +n^{2}N_{-1}\left[ \frac{Q}{N_{-1}\left( n^{2}+n^{3}+ \cdots +n^{T+2}\right) }\right] ^{\sigma } \\&\quad + \cdots \end{aligned}$$

This can be simplified to:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-1}N_{-(T-s-z)}}\right) ^{\sigma }\right] \\&\quad =\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \end{aligned}$$

Let us suppose, for the sake of presentation, that T is an even number. Then, in history \(\left\{ T,0,m\right\} \), total welfare can be rewritten as:

$$\begin{aligned}&mN_{-2}T\alpha +mN_{-2}\left[ \frac{Q}{N_{-(T-1)}+ \cdots +mN_{-2}}\right] ^{\sigma }\\&\quad +\,mN_{-2}\left[ \frac{Q}{N_{-(T-2)}+ \cdots +mN_{-2}+mN_{-1}}\right] ^{\sigma } \\&\quad +\,mN_{-2}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +N_{-2}\left( m+m^{2}\right) +mN_{-1} }\right] ^{\sigma } \\&\quad + \cdots +mN_{-2}\left[ \frac{Q}{N_{-2}\left( m+m^{2}+ \cdots +m^{T/2}\right) +N_{-1}\left( m+m^{2}+ \cdots +m^{T/2}\right) }\right] ^{\sigma } \\&\quad +\,mN_{-1}T\alpha +mN_{-1}\left[ \frac{Q}{N_{-(T-2)}+ \cdots +mN_{-1}}\right] ^{\sigma }\\&\quad +\,mN_{-1}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +N_{-2}\left( m+m^{2}\right) +mN_{-1}}\right] ^{\sigma } \\&\quad +\,mN_{-1}\left[ \frac{Q}{N_{-(T-4)}+ \cdots +N_{-2}\left( m+m^{2}\right) +N_{-1}\left( m+m^{2}\right) }\right] ^{\sigma } \\&\quad + \cdots +mN_{-1}\left[ \frac{Q}{N_{-2}\left( m^{2}+m^{3}+ \cdots +m^{T/2}\right) + \cdots +N_{-1}\left( m+m^{2}+ \cdots +m^{(T/2)+1}\right) }\right] ^{\sigma } \\&\quad +\,m^{2}N_{-2}T\alpha +m^{2}N_{-2}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +N_{-2} \left( m+m^{2}\right) +mN_{-1}}\right] ^{\sigma } \\&\quad +\,m^{2}N_{-2}\left[ \frac{Q}{N_{-(T-4)}+ \cdots +N_{-2}\left( m+m^{2}\right) +N_{-1}\left( m+m^{2}\right) }\right] ^{\sigma } \\&\quad +\,m^{2}N_{-2}\left[ \frac{Q}{N_{-(T-5)}+ \cdots +N_{-2}\left( m+m^{2}+m^{3}\right) +N_{-1}\left( m+m^{2}\right) }\right] ^{\sigma } \\&\quad + \cdots +m^{2}N_{-2}\left[ \frac{Q}{N_{-2}\left( m^{2}+ \cdots +m^{(T/2)+1}\right) +N_{-1}\left( m^{2}+ \cdots +m^{(T/2)+1}\right) }\right] ^{\sigma } \\&\quad + \cdots \end{aligned}$$

This expression can be rewritten as:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }m^{t}N_{-2}T\alpha +\sum \limits _{t=1}^{\infty }m^{t}N_{-1}T\alpha \\&\quad +\,\sum \limits _{t=1}^{\infty }m^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-1}N_{-(T-s-z)}}\right) ^{\sigma } \right] \\&\quad +\sum \limits _{t=1}^{\infty }m^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{\sum \nolimits _{z=0}^{T-1}N_{-(T-s-z)}} \right) ^{\sigma }\right] \\&\quad =\sum \limits _{t=1}^{\infty }m^{t}N_{-2}T\alpha +\sum \limits _{t=1}^{\infty }m^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }m^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\left( \hat{q}_{s}\right) ^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{\infty }m^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \check{q}_{s}\right) ^{\sigma }\right] \end{aligned}$$

where

$$\begin{aligned} \hat{q}_{s}\equiv & {} Q/ \left[ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\sum \nolimits _{r=1,3,5, \ldots }^{s}\left( N_{-2}\right) m^{(r+1)/2}\right. \\&\qquad \left. +\sum \nolimits _{z=2,4,6, \ldots }^{s}\left( N_{-1}\right) m^{z/2}\right] \\ \check{q}_{s}\equiv & {} Q/ \left[ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z+1)}+mN_{-1}+\sum \nolimits _{r=1,3,5, \ldots }^{s}\left( N_{-2}\right) m^{(r+1)/2}\right. \\&\qquad \left. +\sum \nolimits _{z=2,4,6, \ldots }^{s}\left( N_{-1}\right) m^{z/2} \right] \end{aligned}$$

When the two histories are lifetime equal, we have: \(m=n\frac{N_{-1}}{ N_{-1}+N_{-2}(1-n)}\). Total well-being in the second history can now be written as:

$$\begin{aligned}= & {} \sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}T\alpha +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}T\alpha \\&+\,\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q}_{s}^{\sigma } \right] \\&+\,\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n) }\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma } \right] \end{aligned}$$

Hence social welfare is larger in history \(\left\{ T,n,0\right\} \) than in history \(\left\{ T,0,m\right\} \) if and only if:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\\gtrless & {} \\&\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}T\alpha +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}T\alpha \\&+\,\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q}_{s}^{\sigma } \right] \\&+\,\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n) }\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma } \right] \end{aligned}$$

That expression can be simplified as follows. Note that \(\sum \nolimits _{t=1}^{\infty }n^{t}N_{-1}T\alpha =N_{-1}T\alpha \left( \frac{1}{1-n} -1\right) =\frac{nN_{-1}T\alpha }{1-n}\) and that \(\sum \nolimits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}T\alpha \left( N_{-2}+N_{-1}\right) =T\alpha \left( N_{-2}+N_{-1}\right) \sum \nolimits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}=\frac{T\alpha nN_{-1}}{(1-n)}\). Hence we have:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha =\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-2}T\alpha \\&+\,\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-1}T\alpha \end{aligned}$$

and the condition thus becomes:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\\gtrless & {} \\&\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q}_{s}^{\sigma } \right] \\&+\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n) }\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma } \right] \end{aligned}$$

1.2 Proof of Corollary 1

Take the special case where space does not matter: \(\sigma =0\). The condition becomes:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T \\\gtrless & {} \\&\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}T\alpha +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}T\alpha \\&+\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}T+\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}T \end{aligned}$$

That condition can be simplified as:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\gtrless \left( N_{-2}+N_{-1}\right) \sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t} \\&\quad \iff N_{-1}\left( \frac{n}{1-n}\right) \gtrless \left( N_{-2}+N_{-1}\right) \left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)-nN_{-1}}\right) \\&\quad \iff \frac{1}{1-n}\gtrless \frac{N_{-2}+N_{-1}}{\left( N_{-1}+N_{-2}\right) \left( 1-n\right) } \end{aligned}$$

That condition is always valid. Hence, independently from initial conditions, if space congestion does not matter, histories \(\left\{ T,n,0\right\} \) and \(\left\{ T,0,m\right\} \) bring the same total welfare. This is not surprising, since these two lotteries are, by construction, lifetime-equal, meaning that these yield to exactly the same number of life periods, and, hence, in the absence of concern for congestion, this makes the two lotteries equally good.

1.3 Proof of Proposition 2

Consider first the case of average utilitarianism. Assuming that the two histories are lifetime equal, the total number of individuals born at \(t\ge 0\) in history \(\left\{ T,n,0\right\} \) and in history \(\left\{ T,0,m\right\} \) is: \(\frac{TnN_{-1}}{1-n}\). In the light of this, the average total welfare in history \(\left\{ T,n,0\right\} \) is:

$$\begin{aligned} \frac{\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \nolimits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] }{\frac{TnN_{-1}}{1-n}} \end{aligned}$$

whereas the average total welfare in history \(\left\{ T,0,m\right\} \) is:

$$\begin{aligned}&\frac{\sum \nolimits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}T\alpha +\sum \nolimits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}T\alpha }{\frac{TnN_{-1}}{1-n}} \\&\quad +\sum \limits _{t=1}^{\infty }\frac{\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n) }\right) ^{t}N_{-2}}{\frac{TnN_{-1}}{1-n}}\left[ \sum \limits _{s=t}^{t+T-1} \hat{q}_{s}^{\sigma }\right] +\sum \limits _{t=1}^{\infty }\frac{\left( \frac{ nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}}{\frac{TnN_{-1}}{1-n}}\\&\quad \times \left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma }\right] \end{aligned}$$

Given that \(\frac{TnN_{-1}}{1-n}\) divides both the LHS and the RHS of that condition, it is straightforward to see that average welfare for individuals born at \(t\ge 0\) is larger under history \(\left\{ T,n,0\right\} \) than in history \(\left\{ T,0,m\right\} \) if and only if the same condition as under CU is satisfied. The same rationale can be used to show that CLU yields exactly the same ranking as CU as far as the comparison of lifetime equal histories is concerned.

1.4 Proof of Lemma 2

Let us compute the total long-run population size under the two histories \( \left\{ T,n,0\right\} \) and \(\left\{ T,0,m\right\} \). In general, the total population follows the dynamics:

$$\begin{aligned} L_{0}= & {} N_{-(T-1)}+N_{-(T-2)}+ \cdots +N_{-2}+N_{-1}+N_{0} \\ L_{1}= & {} N_{-(T-2)}+N_{-(T-3)}+ \cdots +N_{-1}+N_{0}+N_{1} \\ L_{2}= & {} N_{-(T-3)}+N_{-(T-4)}+ \cdots +N_{0}+N_{1}+N_{2} \\&\ldots \\ L_{T-2}= & {} N_{-1}+N_{0}+N_{1}+ \ldots +N_{T-2} \\ L_{T-1}= & {} N_{0}+N_{1}+N_{2}+ \cdots +N_{T-1} \\&\ldots \\ L_{t}= & {} N_{t-T+1}+ \cdots +N_{t-1}+N_{t} \end{aligned}$$

Under the history \(\left\{ T,1,0\right\} \), that evolution takes the form:

$$\begin{aligned} L_{0}= & {} N_{-(T-1)}+N_{-(T-2)}+ \cdots +N_{-2}+N_{-1}+N_{-1} \\ L_{1}= & {} N_{-(T-2)}+N_{-(T-3)}+ \cdots +3N_{-1} \\ L_{2}= & {} N_{-(T-3)}+N_{-(T-4)}+ \cdots +4N_{-1} \\&\ldots \\ L_{T-2}= & {} TN_{-1} \\ L_{t}= & {} TN_{-1}\quad \text { for }\,\,t\ge T-2 \end{aligned}$$

Under the history \(\left\{ T,0,1\right\} \), that evolution takes the form (we assume T is an even number):

$$\begin{aligned} L_{0}= & {} N_{-(T-1)}+N_{-(T-2)}+ \cdots +N_{-2}+N_{-1}+N_{-2} \\ L_{1}= & {} N_{-(T-2)}+N_{-(T-3)}+ \cdots +N_{-1}+N_{-2}+N_{-1} \\ L_{2}= & {} N_{-(T-3)}+N_{-(T-4)}+ \cdots +N_{-1}+N_{-2}+N_{-1}+N_{-2} \\&\ldots \\ L_{T-2}= & {} N_{-1}+N_{-2}+N_{-1}+ \cdots +N_{-2} \\ L_{T-1}= & {} N_{-2}+N_{-1}+N_{-2}+ \cdots +N_{-1} \\&\ldots \\ L_{t}= & {} \frac{T}{2}N_{-2}+\frac{T}{2}N_{-1}=\frac{TN_{-2}\left( 1+\frac{N_{-1}}{ N_{-2}}\right) }{2} \end{aligned}$$

Hence, the asymptotic population size under \(\left\{ T,1,0\right\} \) and \( \left\{ T,0,1\right\} \) are ranked according to:

$$\begin{aligned} TN_{-1}\gtrless \frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\iff N_{-1}\gtrless N_{-2} \end{aligned}$$

Hence, if \(N_{-1}>N_{-2}\), the asymptotic population under \(\left\{ T,1,0\right\} \) exceeds the one under \(\left\{ T,0,1\right\} \). If \( N_{-1}=N_{-2}\), the asymptotic population under \(\left\{ T,1,0\right\} \) equals the one under \(\left\{ T,0,1\right\} \). If , \(N_{-1}<N_{-2}\), the asymptotic population under \(\left\{ T,1,0\right\} \) is smaller than the one under \(\left\{ T,0,1\right\} \).

1.5 Proof of Proposition 3

Social welfare at the stationary equilibrium is equal to (abstracting from time indexes):

$$\begin{aligned} LTu(q)=LTu\left( \frac{Q}{L}\right) =LT\left( \frac{Q}{L}\right) ^{\sigma }+LT\alpha =L^{1-\sigma }TQ^{\sigma }+LT\alpha \end{aligned}$$

where L denotes the asymptotic population size, and q the asymptotic space per head.

Under history \(\left\{ T,1,0\right\} \), that formula becomes:

$$\begin{aligned} TN_{-1}Tu(q)= & {} T^{2}N_{-1}\left[ \alpha +\left( \frac{Q}{TN_{-1}}\right) ^{\sigma }\right] \\= & {} T^{2}N_{-1}\alpha +T^{2-\sigma }\left( N_{-1}\right) ^{1-\sigma }Q^{\sigma } \end{aligned}$$

Under the history \(\left\{ T,0,1\right\} \), that formula becomes:

$$\begin{aligned} LTu(q)= & {} \frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}T\left[ \alpha +\left( \frac{Q}{\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}}\right) ^{\sigma }\right] \\= & {} \frac{T^{2}N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) \alpha }{2}+\left( \frac{ TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\right) ^{1-\sigma }TQ^{\sigma } \end{aligned}$$

Hence the ranking of the CU planner depends on:

$$\begin{aligned} T^{2}N_{-1}\alpha +T^{2-\sigma }\left( N_{-1}\right) ^{1-\sigma }Q^{\sigma }\gtrless \frac{T^{2}N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) \alpha }{2}+\left( \frac{ TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\right) ^{1-\sigma }TQ^{\sigma } \end{aligned}$$

That expression can be written as:

If \(N_{-1}=N_{-2}\), the LHS and RHS are equal to 0, so that indifference holds. If \(N_{-1}<N_{-2}\), and \(\alpha >0\), the LHS is negative, while the RHS is positive (given \(\sigma \le 1\)). Hence the history \(\left\{ T,0,1\right\} \) is better. If \(N_{-1}>N_{-2}\), and \(\alpha >0\), the LHS is positive, while the RHS is negative (given \(\sigma \le 1\)). Hence the history \(\left\{ T,1,0\right\} \) is better. If \(N_{-1}<N_{-2}\), and \(\alpha <0\), the LHS is positive, while the RHS is positive (given \(\sigma \le 1\)), so that the ranking depends on \(\alpha ( \frac{N_{-1}-N_{-2}}{2}) \gtrless ( \frac{Q}{T}) ^{\sigma }[ ( \frac{ (N_{-2}+N_{-1})}{2}) ^{1-\sigma }-( N_{-1}) ^{1-\sigma } ] \). If \(N_{-1}>N_{-2}\), and \(\alpha <0\), the LHS is negative, while the RHS is negative (given \(\sigma \le 1\)), the same indeterminacy prevails.

1.6 Proof of Proposition 4

Under \(\left\{ T,1,0\right\} \), average social welfare is:

$$\begin{aligned} Tu(q)=T\left( \frac{Q}{TN_{-1}}\right) ^{\sigma }+T\alpha \end{aligned}$$

Under \(\left\{ T,0,1\right\} \), L equals \(\frac{TN_{-2}(1+\frac{N_{-1}}{ N_{-2}})}{2}\), so that average social welfare is:

$$\begin{aligned} Tu(q)=T\left( \frac{Q}{\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}}\right) ^{\sigma }+T\alpha \end{aligned}$$

Hence the ranking between \(\left\{ T,1,0\right\} \) and \(\left\{ T,0,1\right\} \) depends on:

$$\begin{aligned} T\left( \frac{Q}{TN_{-1}}\right) ^{\sigma }+T\alpha \gtrless T\left( \frac{Q }{\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}}\right) ^{\sigma }+T\alpha \iff N_{-1}\lessgtr N_{-2} \end{aligned}$$

Simplifications yield: \(N_{-1}\lessgtr N_{-2}\). Hence if \(N_{-1}>N_{-2}\), \( \left\{ T,0,1\right\} \) is preferred over \(\left\{ T,1,0\right\} \). If \( N_{-1}<N_{-2}\), \(\left\{ T,1,0\right\} \) is preferred over \(\left\{ T,0,1\right\} \). Indifference holds under \(N_{-1}=N_{-2}\).

1.7 Proof of Proposition 5

Under history \(\left\{ T,1,0\right\} \), social welfare under CLU at the stationary equilibrium is equal to (abstracting from time indexes):

$$\begin{aligned} LT\left[ u(q)-\hat{u}\right]= & {} TN_{-1}T\left[ u(q)-\hat{u}\right] \\= & {} TN_{-1}T\left( \frac{Q}{TN_{-1}}\right) ^{\sigma }+TN_{-1}T( \alpha - \hat{u}) \\= & {} T^{2-\sigma }\left( N_{-1}\right) ^{1-\sigma }Q^{\sigma }+T^{2}N_{-1}( \alpha -\hat{u}) \end{aligned}$$

Under history \(\left\{ T,0,1\right\} \), that formula becomes:

$$\begin{aligned} LT\left[ u(q)-\hat{u}\right] =\left( \frac{N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2 }\right) ^{1-\sigma }T^{2-\sigma }Q^{\sigma }+\frac{N_{-2}\left( 1+\frac{N_{-1}}{ N_{-2}}\right) }{2}T^{2}( \alpha -\hat{u}) \end{aligned}$$

Hence the ranking of the CLU planner depends on:

$$\begin{aligned}&T^{2-\sigma }\left( N_{-1}\right) ^{1-\sigma }Q^{\sigma }+T^{2}N_{-1}( \alpha -\hat{u}) \gtrless \left( \frac{N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\right) ^{1-\sigma }T^{2-\sigma }Q^{\sigma }\\&\quad +\,\frac{N_{-2}\left( 1+\frac{N_{-1} }{N_{-2}}\right) }{2}T^{2}( \alpha -\hat{u}) \end{aligned}$$

After simplifications, that expression becomes:

$$\begin{aligned} ( \alpha -\hat{u}) \left[ \frac{N_{-1}-N_{-2}}{2}\right] \gtrless \left( \frac{Q}{T}\right) ^{\sigma }\left[ \left( \frac{N_{-2}+N_{-1}}{2} \right) ^{1-\sigma }-\left( N_{-1}\right) ^{1-\sigma }\right] \end{aligned}$$

If \(N_{-1}=N_{-2}\), the LHS and RHS are equal to 0, so that indifference holds. If \(N_{-1}<N_{-2}\), and \(\alpha -\hat{u}>0\), the LHS is negative, while the RHS is positive (given \(\sigma \le 1\)). Hence the history \( \left\{ T,0,1\right\} \) is better. If \(N_{-1}>N_{-2}\), and \(\alpha -\hat{u} >0 \), the LHS is positive, while the RHS is negative (given \(\sigma \le 1\) ). Hence the history \(\left\{ T,1,0\right\} \) is better. If \(N_{-1}<N_{-2}\), and \(\alpha -\hat{u}<0\), the LHS is positive, while the RHS is positive (given \(\sigma \le 1\)), so that the ranking depends on \(( \alpha -\hat{ u}) [ \frac{N_{-1}-N_{-2}}{2}] \gtrless ( \frac{Q}{T} ) ^{\sigma }[( \frac{N_{-2}+N_{-1}}{2}) ^{1-\sigma }-\left( N_{-1}\right) ^{1-\sigma }] \). If \(N_{-1}>N_{-2}\), and \( \alpha -\hat{u}<0\), the LHS is negative, while the RHS is negative (given \( \sigma \le 1\)), the same indeterminacy prevails.

1.8 Proof of Proposition 6

Under history \(\left\{ T,n,0\right\} \), the cumulated social welfare for individuals born at \(t\ge 0\) is:

$$\begin{aligned}&nN_{-1}T\alpha +nN_{-1}\left[ \frac{Q}{N_{-(T-1)}+ \cdots +nN_{-1}}\right] ^{\sigma }+nN_{-1}\left[ \frac{Q}{N_{-(T-2)}+ \cdots +n^{2}N_{-1}}\right] ^{\sigma } \\&\quad + \cdots +nN_{-1}\left[ \frac{Q}{nN_{-1}+n^{2}N_{-1}+ \cdots +n^{T+1}N_{-1}}\right] ^{\sigma }\\&\quad +\,nN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(n^{T-1}) ^{\delta }) \\&\quad +\,n^{2}N_{-1}T\alpha +n^{2}N_{-1}\left[ \frac{Q}{ N_{-(T-2)}+ \cdots +nN_{-1}+n^{2}N_{-1}}\right] ^{\sigma }\\&\quad +\,n^{2}N_{-1}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +n^{3}N_{-1}}\right] ^{\sigma } \\&\quad + \cdots +n^{2}N_{-1}\left[ \frac{Q}{n^{2}N_{-1}+n^{3}N_{-1}+ \cdots +n^{T+2}N_{-1}} \right] ^{\sigma }\\&\quad +\,n^{2}N_{-1}\left( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(n^{T-1}) ^{\delta }\right) \\&\quad +\,n^{3}N_{-1}T\alpha +n^{3}N_{-1}\left[ \frac{Q}{ N_{-(T-3)}+ \cdots +n^{2}N_{-1}+n^{3}N_{-1}}\right] ^{\sigma }\\&\quad +\,n^{3}N_{-1}\left[ \frac{Q}{N_{-(T-4)}+ \cdots +n^{4}N_{-1}}\right] ^{\sigma } \\&\quad + \cdots +n^{3}N_{-1}\left[ \frac{Q}{n^{3}N_{-1}+n^{4}N_{-1}+ \cdots +n^{T+3}N_{-1}} \right] ^{\sigma }\\&\quad +\,n^{3}N_{-1}\left( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(n^{T-1}) ^{\delta }\right) \\&\quad + \cdots \end{aligned}$$

This can be rewritten as:

$$\begin{aligned}&\frac{nN_{-1}T\alpha }{1-n}+\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}} \right) ^{\sigma }\right] \\&\quad +\frac{nN_{-1}}{1-n}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \end{aligned}$$

Under history \(\left\{ T,0,m\right\} \), the cumulated social welfare for individuals born at \(t\ge 0\) is:

$$\begin{aligned}&mN_{-2}T\alpha +mN_{-2}\left[ \frac{Q}{N_{-(T-1)}+ \cdots +N_{-1}+mN_{-2}} \right] ^{\sigma } \\&\quad +\,mN_{-2}\left[ \frac{Q}{N_{-(T-2)}+ \cdots +mN_{-2}+mN_{-1}}\right] ^{\sigma } \\&\quad +\,mN_{-2}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +N_{-2}\left( m+m^{2}\right) +mN_{-1} }\right] ^{\sigma } \\&\quad + \cdots +mN_{-2}\left[ \frac{Q}{N_{-2}\left( m+m^{2}+ \cdots +m^{T/2}\right) +N_{-1}\left( m+m^{2}+ \cdots +m^{T/2}\right) }\right] ^{\sigma } \\&\quad +\,mN_{-2}( ((T-2)m)^{\delta }+((T-4)m^{2})^{\delta }+ \cdots +((T-T+2)m^{T-2}) ^{\delta }) \\&\quad +\,mN_{-1}T\alpha +mN_{-1}\left[ \frac{Q}{N_{-(T-2)}+ \cdots +mN_{-2}+mN_{-1}} \right] ^{\sigma } \\&\quad +\,mN_{-1}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +N_{-2}\left( m+m^{2}\right) +mN_{-1} }\right] ^{\sigma } \\&\quad +\,mN_{-1}\left[ \frac{Q}{N_{-(T-4)}+ \cdots +N_{-2}\left( m+m^{2}\right) +N_{-1}\left( m+m^{2}\right) }\right] ^{\sigma } \\&\quad + \cdots +mN_{-1}\left[ \frac{Q}{N_{-2}\left( m^{2}+m^{3}+ \cdots +m^{T/2}\right) + \cdots +N_{-1}\left( m+m^{2}+ \cdots +m^{(T/2)+1}\right) }\right] ^{\sigma } \\&\quad +\,mN_{-1}( ((T-2)m)^{\delta }+((T-4)m^{2})^{\delta }+ \cdots +((T-T+2)m^{T-2}) ^{\delta }) \\&\quad +\,m^{2}N_{-2}T\alpha +m^{2}N_{-2}\left[ \frac{Q}{N_{-(T-3)}+ \cdots +N_{-2} \left( m+m^{2}\right) +mN_{-1}}\right] ^{\sigma } \\&\quad +\,m^{2}N_{-2}\left[ \frac{Q}{N_{-(T-4)}+ \cdots +N_{-2}\left( m+m^{2}\right) +N_{-1}\left( m+m^{2}\right) }\right] ^{\sigma } \\&\quad +\,m^{2}N_{-2}\left[ \frac{Q}{N_{-(T-5)}+ \cdots +N_{-2}\left( m+m^{2}+m^{3}\right) +N_{-1}\left( m+m^{2}\right) }\right] ^{\sigma } \\&\quad + \cdots +m^{2}N_{-2}\left[ \frac{Q}{N_{-2}\left( m^{2}+m^{3}+ \cdots +m^{(T/2)+1}\right) +N_{-1}\left( m^{2}+m^{3}+ \cdots +m^{(T/2)+1}\right) }\right] ^{\sigma } \\&\quad +\,m^{2}N_{-2}( ((T-2)m)^{\delta }+((T-4)m^{2})^{\delta }+ \cdots +((T-T+2)m^{T-2}) ^{\delta }) \\&\quad +\cdots \end{aligned}$$

Substituting for m in the context of equal lifetime histories, that expression can be rewritten as:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}T\alpha +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}T\alpha \\&\quad +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q}_{s}^{\sigma } \right] \\&\quad +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n) }\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma } \right] \\&\quad +\sum _{t=1}^{\infty }N_{-2}\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}\left( \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\quad \left. + \cdots +\left( 2\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\&\quad +\sum _{t=1}^{\infty }N_{-1}\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}\left( \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\quad \left. + \cdots +\left( 2\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \end{aligned}$$

That expression can be rewritten as:

$$\begin{aligned}&\frac{T\alpha nN_{-1}}{(1-n)} \\&\quad +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q}_{s}^{\sigma } \right] \\&\quad +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n) }\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma } \right] \\&\quad +\left( \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots +\left( (T-T+2)\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\&\quad \times \frac{nN_{-1}}{(1-n)} \end{aligned}$$

Hence history \(\left\{ T,n,0\right\} \) has a larger or a lower social welfare than history \(\left\{ T,0,m\right\} \) if and only if:

$$\begin{aligned}&\frac{nN_{-1}T\alpha }{1-n}+\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}} \right) ^{\sigma }\right] \\&\quad +\,\frac{nN_{-1}}{1-n}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \\&\quad \gtrless \frac{nN_{-1}T\alpha }{(1-n)}+\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q}_{s}^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{ \infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma }\right] \\&\quad \times \left( \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots +\left( (T-T+2)\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\&\quad \times \frac{nN_{-1}}{(1-n)} \end{aligned}$$

That inequality can be rewritten as:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\&\quad +\,\frac{nN_{-1}}{1-n}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \\&\quad \gtrless \sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q} _{s}^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{ q}_{s}^{\sigma }\right] \\&\quad +\left( \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots +\left( (T-T+2)\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\&\quad \times \frac{nN_{-1}}{1-n} \end{aligned}$$

1.9 Proof of Corollary 2

Fixing \(\sigma =0\) in the condition:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\&\quad +\frac{nN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta })}{1-n} \\&\quad \gtrless \sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-2}\left[ \sum \limits _{s=t}^{t+T-1}\hat{q} _{s}^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\check{ q}_{s}^{\sigma }\right] \\&\quad \times \left( \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots +\left( (T-T+2)\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\&\quad \times \frac{nN_{-1}}{1-n} \end{aligned}$$

yields:

$$\begin{aligned}&( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \\&\quad \gtrless \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots +\left( (T-T+2)\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta } \end{aligned}$$

The LHS is unambiguously larger than the RHS, since \(m<n\) and coexistence time is necessarily reduced by birth postponement. Hence the history \( \left\{ T,n,0\right\} \) is preferred over \(\left\{ T,0,m\right\} \).

1.10 Proof of Corollary 3

Under AU, the condition for preferring \(\left\{ T,n,0\right\} \) over \( \left\{ T,0,m\right\} \) becomes:the average total welfare in history \( \left\{ T,n,0\right\} \) is:

$$\begin{aligned}&\frac{\left[ \begin{array}{l} \sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\ +\frac{nN_{-1}( ((T-1)n)^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta })}{1-n} \end{array} \right] }{\frac{TnN_{-1}}{1-n}} \\&\quad \gtrless \frac{\sum \nolimits _{t=1}^{\infty }\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-2}T\alpha +\sum \nolimits _{t=1}^{\infty }\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}T\alpha }{\frac{ TnN_{-1}}{1-n}} \\&\quad +\frac{\left( \left( \frac{(T-2)nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots +\left( (T-T+2)\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n)} \right) ^{T-2}\right) ^{\delta }\right) \frac{nN_{-1}}{(1-n)}}{\frac{TnN_{-1} }{1-n}} \\&\quad +\sum \limits _{t=1}^{\infty }\frac{\left( \frac{nN_{-1}}{N_{-1}+N_{-2}(1-n) }\right) ^{t}N_{-2}}{\frac{TnN_{-1}}{1-n}}\left[ \sum \limits _{s=t}^{t+T-1} \hat{q}_{s}^{\sigma }\right] +\sum \limits _{t=1}^{\infty }\frac{\left( \frac{ nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{t}N_{-1}}{\frac{TnN_{-1}}{1-n}}\\&\quad \times \left[ \sum \limits _{s=t}^{t+T-1}\check{q}_{s}^{\sigma }\right] \end{aligned}$$

Simplifying by the total number of births leads to the same condition as in Proposition 6. The same kind of argument holds for CLU.

1.11 Proof of Proposition 7

Under history \(\left\{ T,1,0\right\} \), social welfare at the stationary equilibrium is equal to (abstracting from time indexes):

$$\begin{aligned} LTu(q)= & {} TN_{-1}Tu\left( \frac{Q}{L}\right) \\= & {} TN_{-1}T\left( \frac{Q}{L}\right) ^{\sigma }\\&+\,TN_{-1}T\alpha +TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(1n^{T-1}) ^{\delta }) \\= & {} \left( TN_{-1}\right) ^{1-\sigma }TQ^{\sigma } \\&+\,TN_{-1}T\alpha +TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(1n^{T-1}) ^{\delta }) \end{aligned}$$

Under the history \(\left\{ T,0,1\right\} \), that formula is:

$$\begin{aligned} LTu(q)= & {} \frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}T\left[ \alpha +\left( \frac{Q}{\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}}\right) ^{\sigma }\right] \\&+\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\left( \left( \frac{(T-2)nN_{-1} }{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\left. + \cdots +\left( 2\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\= & {} \frac{T^{2}N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) \alpha }{2}+\left( \frac{ TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\right) ^{1-\sigma }TQ^{\sigma } \\&+\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\left( \left( \frac{(T-2)nN_{-1} }{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\left. + \cdots +\left( 2\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \end{aligned}$$

Hence the ranking of the CU planner depends on:

$$\begin{aligned}&\left( TN_{-1}\right) ^{1-\sigma }TQ^{\sigma }+TN_{-1}T\alpha +TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }\\&\quad + \cdots +((T-T+1)n^{T-1}) ^{\delta }) \\&\quad \gtrless \frac{T^{2}N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) \alpha }{2}+\left( \frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\right) ^{1-\sigma }TQ^{\sigma } \\&\quad +\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\left( \left( \frac{(T-2)nN_{-1} }{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\quad \left. + \cdots +\left( 2\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \end{aligned}$$

That expression can be written as:

$$\begin{aligned}&T^{2}\alpha \left( \frac{N_{-1}-N_{-2}}{2}\right) \\&\quad \gtrless Q^{\sigma }T^{2-\sigma }\left[ \left( \frac{(N_{-2}+N_{-1})}{2} \right) ^{1-\sigma }-\left( N_{-1}\right) ^{1-\sigma }\right] \\&\quad +\,\frac{T(N_{-2}+N_{-1})}{2}\left( \left( \frac{(T-2)nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots \right. \\&\quad \left. +\left( 2\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\&\quad -TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \end{aligned}$$

If \(N_{-2}=N_{-1}\) and \(\alpha \ge 0\), the LHS is equal to zero, while the RHS is negative, so that history \(\left\{ T,1,0\right\} \) is better. If \( N_{-1}>N_{-2}\), the LHS is positive, while the RHS is, under \(\alpha \ge 0\) , negative, so that history \(\left\{ T,1,0\right\} \) is better. If \( N_{-1}<N_{-2}\) and \(\alpha \ge 0\), the LHS is negative, and the RHS is undetermined. Under \(\alpha <0\), the sign of the RHS is undetermined. Hence whether history \(\left\{ T,1,0\right\} \) is preferred depends on whether the above condition holds, which depends on how large \(\alpha \) is with respect to T.

1.12 Proof of Proposition 8

Average welfare in the long-run population is, under history \(\left\{ T,1,0\right\} \), to (abstracting from time indexes):

$$\begin{aligned} Tu(q)= & {} T\left( \frac{Q}{L}\right) ^{\sigma }+T\alpha +( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(1n^{T-1}) ^{\delta }) \\= & {} \left( TN_{-1}\right) ^{-\sigma }TQ^{\sigma }+T\alpha +(T-1)^{\delta }+(T-2)^{\delta }+ \cdots +(1)^{\delta } \end{aligned}$$

whereas it is equal, under history \(\left\{ T,0,1\right\} \), to:

$$\begin{aligned} Tu(q)= & {} T\left( \frac{Q}{L}\right) ^{\sigma }+T\alpha +( ((T-2)m)^{\delta }+((T-4)m^{2})^{\delta }+ \cdots +(2m^{T-2}) ^{\delta }) \\= & {} \left( \frac{T(N_{-2}+N_{-1})}{2}\right) ^{-\sigma }TQ^{\sigma }+[ T\alpha +(T-2)^{\delta }+(T-4)^{\delta }+ \cdots +(2)^{\delta }] \end{aligned}$$

Hence the ranking of the AU planner depends on:

$$\begin{aligned}&\left( TN_{-1}\right) ^{-\sigma }TQ^{\sigma }+T\alpha +(T-1)^{\delta }+(T-2)^{\delta }+ \cdots +(1)^{\delta } \\&\quad \gtrless \left( \frac{T(N_{-2}+N_{-1})}{2}\right) ^{-\sigma }TQ^{\sigma }+ [ T\alpha +(T-2)^{\delta }+(T-4)^{\delta }+ \cdots +(2)^{\delta }] \end{aligned}$$

When \(N_{-2}=N_{-1}\), the first terms of the LHS and RHS are equal, so that the LHS exceeds the RHS. Hence history \(\left\{ T,1,0\right\} \) is better. If \(N_{-2}>N_{-1}\), the LHS is also larger than the RHS, so that history \( \left\{ T,1,0\right\} \) is better. However, when \(N_{-2}<N_{-1}\), the first term of the RHS exceeds the first term of the LHS, but the second term of the RHS is smaller than the second term of the LHS, so the ranking is ambiguous.

1.13 Proof of Proposition 9

Under history \(\left\{ T,1,0\right\} \), social welfare at the stationary equilibrium is equal to (abstracting from time indexes):

$$\begin{aligned} LTu(q)= & {} TN_{-1}T\left[ u\left( \frac{Q}{L}\right) -\hat{u}\right] \\= & {} TN_{-1}T\left( \frac{Q}{L}\right) ^{\sigma }+TN_{-1}T( \alpha -\hat{u }) \\&+\,TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(1n^{T-1}) ^{\delta }) \\= & {} \left( TN_{-1}\right) ^{1-\sigma }TQ^{\sigma }+TN_{-1}T(\alpha -\hat{u} )\\&+\,TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +(1n^{T-1}) ^{\delta }) \end{aligned}$$

Under history \(\left\{ T,0,1\right\} \), that formula becomes:

$$\begin{aligned}&\frac{T^{2}N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\left( \alpha -\hat{u} \right) +\left( \frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\right) ^{1-\sigma }TQ^{\sigma } \\&+\,\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\left( \left( \frac{(T-2)nN_{-1} }{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\left. + \cdots +\left( (T-T+2)\left( \frac{ nN_{-1}}{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \end{aligned}$$

Hence the ranking of the CLU planner depends on:

$$\begin{aligned}&\left( TN_{-1}\right) ^{1-\sigma }TQ^{\sigma }+TN_{-1}T(\alpha -\hat{u} )+TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots \\&\qquad +(1n^{T-1}) ^{\delta }) \\&\quad \gtrless \frac{T^{2}N_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\left( \alpha -\hat{ u}\right) +\left( \frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\right) ^{1-\sigma }TQ^{\sigma } \\&\quad +\,\frac{TN_{-2}\left( 1+\frac{N_{-1}}{N_{-2}}\right) }{2}\left( \left( \frac{(T-2)nN_{-1} }{N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots \right. \\&\quad \left. +\left( 2\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \end{aligned}$$

That expression can be rewritten as:

$$\begin{aligned}&(\alpha -\hat{u})T^{2}\left( \frac{N_{-1}-N_{-2}}{2}\right) \\&\quad \gtrless TQ^{\sigma }\left[ \left( \frac{T(N_{-2}+N_{-1})}{2}\right) ^{1-\sigma }-\left( TN_{-1}\right) ^{1-\sigma }\right] \\&\quad +\,\frac{T(N_{-2}+N_{-1})}{2}\left( \left( \frac{(T-2)nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{\delta }+ \cdots \right. \\&\quad \left. +\left( 2\left( \frac{nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \\&\quad -\,TN_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \end{aligned}$$

If \(N_{-2}=N_{-1}\) and \(\alpha -\hat{u}\ge 0\), the LHS is equal to zero, while the RHS is negative, so that history \(\left\{ T,1,0\right\} \) is better. If \(N_{-1}>N_{-2}\), the LHS is positive, while the RHS is, under \( \alpha -\hat{u}\ge 0\), negative, so that history \(\left\{ T,1,0\right\} \) is better. If \(N_{-1}<N_{-2}\) and \(\alpha -\hat{u}\ge 0\), the LHS is negative, and the RHS is undetermined. Under \(\alpha -\hat{u}<0\), the sign of the RHS is undetermined. Hence whether history \(\left\{ T,1,0\right\} \) is preferred depends on whether the above condition holds, which depends on how large \(\alpha -\hat{u}\) is with respect to T.

1.14 Proof of Proposition 10

Under classical utilitarianism, total welfare for individuals born at \(t\ge 0\) is, without the transition:

$$\begin{aligned} \sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \end{aligned}$$

whereas, under the transition, it is:

$$\begin{aligned}&mN_{-1}\left( \alpha +\left( \frac{Q}{mN_{-1}+N_{-1}+N_{-2}+ \cdots +N_{-(T-2)}} \right) ^{\sigma }\right) \\&\quad +\,mN_{-1}\left( \alpha +\left( \frac{Q}{mN_{-1}+N_{-1}+N_{-2}+ \cdots +N_{-(T-3)} }\right) ^{\sigma }\right) \\&\quad +\,mN_{-1}\left( \alpha +\left( \frac{Q}{ m^{2}N_{-1}+mN_{-1}+N_{-1}+N_{-2}+ \cdots +N_{-(T-4)}}\right) ^{\sigma }\right) \\&\quad +\,mN_{-1}\left( \alpha +\left( \frac{Q}{ m^{2}N_{-1}+mN_{-1}+N_{-1}+N_{-2}+ \cdots +N_{-(T-5)}}\right) ^{\sigma }\right) \\&\quad + \cdots +mN_{-1}\left( \alpha +\left( \frac{Q}{ m^{T/2}N_{-1}+ \cdots +m^{2}N_{-1}+mN_{-1}}\right) ^{\sigma }\right) \\&\quad +\,m^{2}N_{-1}\left( \alpha +\left( \frac{Q}{ m^{2}N_{-1}+mN_{-1}+N_{-1}+N_{-2}+ \cdots +N_{-(T-4)}}\right) ^{\sigma }\right) \\&\quad +\,m^{2}N_{-1}\left( \alpha +\left( \frac{Q}{ m^{2}N_{-1}+mN_{-1}+N_{-1}+N_{-2}+ \cdots +N_{-(T-5)}}\right) ^{\sigma }\right) \\&\quad + \cdots +m^{2}N_{-1}\left( \alpha +\left( \frac{Q}{ m^{(T/2)+1}N_{-1}+ \cdots +m^{2}N_{-1}}\right) ^{\sigma }\right) \\&\quad +\cdots \end{aligned}$$

This can be rewritten as:

$$\begin{aligned}&\sum _{t=1}^{\infty }m^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }m^{t}N_{-1}\\&\quad \times \left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1,3,5,...}^{s}m^{(r+1)/2}}\right) ^{\sigma }\right] \end{aligned}$$

Hence the transition is socially desirable iff:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\&\quad \gtrless \\&\quad \sum _{t=1}^{\infty }m^{t}N_{-1}T\alpha \\&\quad +\sum \limits _{t=1}^{\infty }m^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1,3,5,\ldots }^{s}m^{(r+1)/2}}\right) ^{\sigma }\right] \end{aligned}$$

Substituting for \(n=m\) and simplifying yields:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\&\quad \gtrless \\&\quad \sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1,3,5,\ldots }^{s}n^{(r+1)/2}}\right) ^{\sigma }\right] \end{aligned}$$

Given that coexisting generations are always less numerous after the transition, we have that the RHS necessarily exceeds the LHS, leading to a socially desirable transition. The same argument holds when considering AU and CLU.

1.15 Proof of Proposition 11

When coexistence concerns, the condition becomes:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}T\alpha +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \\&\quad \gtrless \\&\quad \sum _{t=1}^{\infty }n^{t}N_{-1}T\alpha \\&\quad +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1}\left( \frac{Q}{ \sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1,3,5,...}^{s}n^{(r+1)/2}}\right) ^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left( \left( \frac{(T-2)nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\quad \left. + \cdots +\left( (T-T+2)\left( \frac{nN_{-1} }{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \end{aligned}$$

Simplifications yield:

$$\begin{aligned}&\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1}^{s}n^{r}}\right) ^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}( ((T-1)n)^{\delta }+((T-2)n^{2})^{\delta }+ \cdots +((T-T+1)n^{T-1}) ^{\delta }) \\&\quad \gtrless \\&\quad \sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left[ \sum \limits _{s=t}^{t+T-1} \left( \frac{Q}{\sum \nolimits _{z=0}^{T-s-1}N_{-(T-s-z)}+\left( N_{-1}\right) \sum _{r=1,3,5,\ldots }^{s}n^{(r+1)/2}}\right) ^{\sigma }\right] \\&\quad +\sum \limits _{t=1}^{\infty }n^{t}N_{-1}\left( \left( \frac{(T-2)nN_{-1}}{ N_{-1}+N_{-2}(1-n)}\right) ^{\delta }\right. \\&\quad \left. + \cdots +\left( (T-T+2)\left( \frac{nN_{-1} }{N_{-1}+N_{-2}(1-n)}\right) ^{T-2}\right) ^{\delta }\right) \end{aligned}$$

The transition towards later births is not necessarily good: it is still true that the first term of the LHS is lower than the first term of the RHS. But the second term of the LHS is larger than the second term of the RHS. Hence the comparison depends on the relative strength of congestion versus coexistence concerns. The same condition holds for AU and CLU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponthiere, G. Utilitarian population ethics and births timing. J Econ 117, 189–238 (2016). https://doi.org/10.1007/s00712-015-0460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-015-0460-6

Keywords

JEL Classification

Navigation