Abstract
Unusual agpaitic syenites containing up to 25 vol.% lamprophyllite-group minerals (lamprophyllite, fluorlamprophyllite, barytolamprophyllite, and the new mineral species fluorbarytolamprophyllite, IMA 2016–089) have been discovered in the Niva intrusion and Mokhnatye Roga alkaline dyke belonging to the Kola Alkaline Province, northwestern Russia. The other main components of the rocks are potassium feldspar, Ti-rich aegirine-augite, aenigmatite, alkaline amphiboles, astrophyllite, natrolite, and ferripyrophyllite. Three generations of lamprophyllite-group minerals can be distinguished based on their morphological features. The new mineral fluorbarytolamprophyllite is the F-dominant analogue of barytolamprophyllite and the Ba-dominant analogue of fluorlamprophyllite. It represents the early generation of lamprophyllite-group minerals (LGM) and forms brown prismatic crystals, their radial aggregates and marginal zones of fluorlamprophyllite crystals. The lustre of the new mineral is vitreous to pearly. Mohs hardness is 2.5. Dcalc is 3.662 g/cm3. The mineral is optically biaxial (+), α = 1.738(3), β = 1.745(4), γ = 1.777(4) (589 nm), 2 V (meas.) = 55(5)°, 2 V (calc.) = 51°. The chemical composition (electron microprobe, water determined by TGA, wt.%) is: Na2O 10.01, K2O 2.65, MgO 0.43, CaO 0.64, SrO 5.59, BaO 16.23, MnO 0.50, FeO 4.44, Al2O3 0.08, TiO2 27.31, ZrO2 0.22, Nb2O5 0.91, Ta2O5 0.15, SiO2 29.35, F 2.41, H2O 0.26, total 101.18. The empirical formula based on 18 anions is (Ba0.865Sr0.44K0.46Na0.26)Σ2.025(Na2.38Ca0.09Fe0.47Mn0.06)Σ3.00(Ti2.79Mg0.09Fe0.035Nb0.06Zr0.015Ta0.01)Σ3.00(Si3.99Al0.01)Σ4.00 O16[F1.04O0.72(OH)0.24]Σ2.00. The IR spectrum is given. The strongest lines of the powder X-ray diffraction pattern are [d, Å (I,%) (hkl)]: 9.692 (40) (200), 3.726 (59) (−311), 3.414 (67) (311), 3.230 (96) (300), 3.013 (53) (−5–11), 2.780 (100) (221), 2.662 (52) (002). The crystal structure has been solved and refined to R1 = 5.07 based on 2897 independent reflections with I > 2σ(I). Fluorbarytolamprophyllite is monoclinic, space group C2/m. The unit-cell parameters refined from the powder data are: a = 19.520(5), b = 7.0995(17), c = 5.3896(20) Å, β = 96.657(23)°; V = 741.86(24) Å3, Z = 2. At Niva and Mokhnatye Roga, most of the LGM were formed during magmatic stage of syenite crystallization from alkaline melt enriched in Na, K, Ba, Fe, Ti and F. Compositional variation of the examined LGM and their textural relations show changes in the Sr/Ba ratio in the parental melt and increasing activity of F and Ba in derivatives fluids as the main factors driving this variation.












Similar content being viewed by others
References
Akimenko MI, Aksenov SM, Sorokhtina NV, Kogarko LN, Kononkova NN, Rastsvetaeva RK, Rozenberg KA (2015) Variations in the chemical composition of lamprophyllite group minerals and the crystal structure of fluorine-rich barytolamprophyllite from new peralkaline dyke. Crystallography Reports 60:821–830
Akimenko MI, Kogarko LN, Sorokhtina NV, Kononkova NN, Mamontov VP (2014) A new occurrence of alkaline magmatism on the Kola Peninsula: an agpaitic dyke in the Kandalaksha region. Dokl Earth Sci 458:1125–1128
Aksenov SM, Rastsvetaeva RK, Chukanov NV (2014) The crystal structure of emmerichite Ва2(Na,Mg)3Fe3+Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral. Z Kristallogr 229(1):1–7
Andrade MB, Yang H, Downs RT Färber G, Contreira Filho RR, Evans SH, Loehn CW, Schumer BN (2017) Fluorlamprophyllite, Na3(SrNa)Ti3(Si2O7)2O2F2, a new mineral from Poços de Caldas alkaline massif, Morro do Serrote, Minas Gerais, Brazil. Mineral Mag 2017. https://doi.org/10.1180/minmag.2017.081.027
Arzamastsev AA, Bea F, Glaznev VN, Arzamastseva LV, Montero P (2001) Kola alkaline province in the Paleozoic: an estimate of the composition of the primary mantle melts and magmogenesis conditions. Ros Zhurn Nauk O Zemle 3(1):1–35
Arzamastsev AA, Belyatskiy BV, Arzamastseva LV (2000) Agpaitic magmatism in the northeastern Baltic Shield: a study of the Niva intrusion, Kola Peninsula, Russia. Lithos 51:27–46
Arzamastsev AA, Chashchin VV, Arzamastseva LV (1999) The Niva Pluton: a new occurrence of the agpaitic magmatism in the Kola alkaline province. Doklady Earth Sci Sect 365(3):305–308
Arzamastsev AA, Fedorov ZA, Arzamastseva LV (2009) Dyke magmatism of the north-eastern part of the Baltic Shield. Nauka, St. Petersburg, 383 pp
Azarova YV (2004) Genesis and minerals typochemistry of number lamprophyllite-barytolamprophyllite from the lujaurite-malignite complex of Khibiny massif. New Data on Minerals 39: 66–72 (in Russian)
Barrer RM (1982) Hydrothermal Chemistry of Zeolites. Academic Press, London, 420 pp
Belokoneva EL, Topnikova AP, Aksenov SM (2015) Topolology-symmetry law of structure of natural titanosilicate micas and related heterophyllosilicates based on the extended OD theory: structure prediction. Crystallogr Rep 60(1):1–15
Brandenburg K, Putz H (2005) DIAMOND Version 3. Crystal Impact GbR, Bonn
Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst 41:244–247
Brown ID, Shannon RD (1973) Empirical bond strength–bond lengths curves for oxides. Acta Cryst 29:266–282
Chakhmouradian AR, Mitchell RH (1999) Primary, agpaitic and deutric stages in the evolution of accessory Sr, REE, Ba and Nb-mineralization in nepheline-syenite pegmatites at pegmatite peak, Bearpaw Mts, Montana. Mineral Petrol 67:85–110
Chakhmouradian AR, Mitchell RH (2002) The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy mountains (Montana, USA): comparisons between potassic and sodic agpaitic pegmatites. Contrib Mineral Petrol 143:93–114
Chukanov NV (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London 1716
Chukanov NV, Moiseev MM, Pekov IV, Lazebnik KA, Rastsvetaeva RK, Zayakina NV, Ferraris G, Ivaldi G (2004) Nabalamprophyllite Ва(Na,Ba){Na3Ti[Ti2O2Si4O14](OH,F)2}, a new layered lamprophyllite-group mineral from the alkaline-ultrabasicmassifs Inagli and Kovdor, Russia. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva 133(1):59–72 (in Russian)
Chukanov NV, Pekov IV, Rastsvetaeva RK, Aksenov SM, Zadov AE, Van KV, Blass G, Schüller W, Ternes B (2012) Lileyite, Ва2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2, a new lamprophyllite group mineral from the Eifel volcanic area, Germany. Eur J Mineral 24(1):181–188
Chukanov NV, Rastsvetaeva RK, Aksenov SM, Blass G, Pekov IV, Belakovskiy DI, Tschörtner J, Schüller W, Ternes B (2014): Emmerichite, Ва2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel paleovolcanic region, Germany. New Data on Minerals 49:5 G 13 (in Russian)
Chukanov NV, Rastsvetaeva RK, Britvin SN, Virus AA, Belakovskiy DI, Pekov IV, Aksenov SM, Ternes B (2011) Schüllerite, Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4, a new mineral species from the Eifel volcanic district, Germany. Geology of Ore Deposits 53:767–774
Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2012) The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian. In book: European Lithosphere Dynamics, Chapter: Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Publisher: Geological Society of London, 579–597
Dawson JB (1998) Peralkaline nephelinite-natrocarbonatite relationships at Ol Doinyo Lengai, Tanzania. J Petrol 39:2077–2094
Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76
Feklichev VG (1989) Diagnostic Constants of Minerals. Nedra, Moscow (in Russian)
Ferraris G, Ivaldi G, Khomyakov AP, Soboleva SV, Belluso E, Pavese A (1996) Nafertisite, a layered titanosilicate member of a polysomatic series including mica. Eur J Mineral 8:241–249
Ferraris G, Gula A (2005) Polysomatic aspects of microporous minerals - Heterophyllosilicates, palysepioles and rhodesite-related structures. In G. Ferraris and S. Merlino (Eds.). Micro- and Mesoporous Mineral Phases. Rev Mineral Geochem 57:69–104
Gerasimovskii VI, Volkov VP, Kogarko LN, Polyakov AI, Saprykina TV, Balashov YA (1966) Geochemistry of the Lovozero alkaline massif, Moscow, 394 pp (in Russian)
Haggerty SE, Anthony NM (1983) Strontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South America. Contrib Mineral Petrol 84:365–381
Ibers JA, Hamilton WC (1974) International tables for X-ray crystallography. Vol. IV. The Kynoch Press, Birmingham
Ivanyuk GY, Yakovenchuk VN, Pakhomovskii YA (2002) Kovdor. Laplandia Minerals. Apatity, 326 pp (in Russian)
Johnsen O, Nielsen TFD, Ronsbo JG (1994) Lamprophyllite and barytolamprophyllitefrom the Tertiary Gardiner complex, East Greenland. Neues Jahrbuch für mineralogie 7:328–336
Kampf AR, Roberts AC, Venance KE, Dunning GE, Walstrom RE (2011) Ferroericssonite, the Fe2+ analogue of ericssonite, from Eastern Fresno County, California, U.S.A. Can Mineral 49:587–594
Kapustin YL (1973) About the new findings of barytolamprophyllite and the chemical formula of lamprophyllite. Reports of the Academy of Sciences 210:921–924 (in Russian)
Kaur G, Mitchell RH (2013) Mineralogy of the P2-West “Kimberlite”, Wajrakarur kimberlite field, Andhra Pradesh, India: kimberlite or lamproite. Mineral Mag 77(8):3175–3196
Kogarko LN, Lahaye Y, Brey G, Foulger PGR, Jurdy DM (2009) Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics Plates, Plumes, and Planetary Processes. The Geological Society of America. Special Paper 430–999
Konev AA, Vorobyev EI, Labeznik KA (1996) Mineralogy of the Murun alkaline massif. Publishing house of the Siberian Branch of the Russian Acad. Sci., Novosibirsk, 222 pp (in Russian)
Kostyleva-Labuntsova EE, Borutsky BE, Sokolova MN, Shlyukova Z, Dorfman MD, Dudkin OB, Kozyreva LV (1978) Mineralogy of the Khibiny Massif. Nauka, Moscow, pp 228–586 (in Russian)
Krivovichev SV, Armbruster T, Yakovenchuk VN, Pakhomovsky YA, Men’shikov YP (2003) Crystal structures of lamprophyllite-2M and lamprophyllite-2O from the Lovozero alkaline massif, Kola peninsula, Russia. Eur J Mineral 15:711–718
Kukharenko AA, Orlova MP, Bulakh AG (1965) The Caledonian Complex of ultrabasic, alkaline rocks, and carbonatites of Kola Peninsula and Northern Karelia, vol 772. Nedra, Moscow (in Russian)
Labeznik KA, Zayakina HB, Paukevich HS (1998) Without strontium lamprophyllite - a new member of the lamprophyllite group. Reports of the Academy of Sciences 361:799–802 (in Russian)
March JS (1975) Aenigmatite stability in silica-undersaturated rocks. Contrib Mineral Petrol 50:135–144
Moiseev MM, Chukanov NV (2006) Mineralogy of alkaline pegmatites and hydrothermalites of the Kovdor massif. New Data on Minerals 41:56–70
Marks MAW, Markl G (2017) A global review on agpaitic rocks. Earth Sci Rev 173:229–258
Moore PB (1971) Ericssonite and orthoericssonite. Two new members of the lamprophyllite group from Långban, Sweden. Lithos 4:137–145
Peng TC, Chang CH (1965) New varieties of lamprophyllite–barytolamprophyllite and orthorhombic lamprophyllite. Sci Sinica 14(12):1827–1840
Peng Z, Zhang J, Shu J (1984) The crystal structure of barytolamprophyllite. Kexue Tongbao 29:237–241
Petřiček V, Dušek M, Palatinus L (2006) Jana2006: Structure determination software programs. Institute of Physics, Praha
Rastsvetaeva RK, Aksenov SM (2011) Crystal Chemistry of Silicates with Three-Layer TOT and HOH Modules of Layered, Chainlike, and Mixed Types. Crystallogr Rep 56(6):910–934
Rastsvetaeva RK, Aksenov SM, Chukanov NV (2011) Crystal structure of schüllerite, a new mineral of the heterophyllosilicate family. Dokl Chem 437:90–94
Rastsvetaeva RK, Aksenov SM, Chukanov NV, Lykova IS, Verin IA (2014) Iron-rich schullerite from Kahlenberg (Eifel, Germany): crystal structure and relation to lamprophyllite group minerals. Crystallography Reports 59(6):867–873
Rastsvetaeva RK, Chukanov NV, Aksenov SM (2016) The crystal chemistry of lamprophyllite related minerals. Eur J Mineral 28:915–930
Rastsvetaeva RK, Dorfman MD (1995) Crystal structure of Ba-lamprophyllite in the isomorphous lamprophyllite-barytolamprophyllite series. Crystallogr Rep 40:951–954
Rastsvetaeva RK, Evsyunin VG, Konev AA (1995) Crystal structure of K-barytolamprophyllite. Crystallography Reports 40:472–474
Rastsvetaeva RK, Sokolova MN, Gusev AI (1990) Refined crystal structure of lamprophyllite. Mineral J 5:25–28 (in Russian)
Saf’yanov YN, Vasil’eva NO, Golovachev VP, Kuz’min EA, Belov NV (1983) Crystal structure of lamprophyllite. Dokl Akad Nauk SSSR 269:117–120 (in Russian)
Sokolova E (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. Can Mineral 44:1273–1333
Sokolova E, Cámara F (2008) From structure topology to chemical composition. III. Titanium silicates: The crystal chemistry of barytolamprophyllite. Can Mineral 46:403–412
Sokolova E, Cámara F (2016) From structure topology to chemical composition. XXI. Understanding the crystal chemistry of barium in TS-block minerals. Can Mineral 54:79–95
Sokolova E, Cámara F (2017) The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineral Mag. https://doi.org/10.1180/minmag.2017.081.010
Ulbrich MNC (1993) Mineralogy of nepheline syenites from the Pocos de Caldas alkaline massif, SE Brazil: chemistry, X-ray data and microtextures of feldspars. Rev Bras Geosci 23(4):388–399
Vlasov KA, Kuzmenko MV, Eskova EM (1966) The Lovozero Alkali Massif. Editorial Board of the Academy of Sciences of the USSR Moscow 618 (in Russian)
Wight Q, Chao G (1995) Mont Saint-Hiliare revisited. Rocks and Minerals 70 (pg. 90–103):131–138
Zaitsev VA (2005) Numerical dependence of the unit-cell parameters of minerals of the lamprophyllite group on the cationic composition in the interlayer position. Crystallography Reports 50(3):379–381
Zaitsev VA, Kogarko LN (2002) The compositions of minerals of the lamprophyllite group from alkaline massifs worldwide. Geochem Int 40(4):313–322
Zhirov DV (2015) Geodynamic Reconstruction of the Palaeozoic Kola Alkaline Large Igneous Province. Book of XXXII International Conference: Alkaline Alkaline Magmatism of the Earth Magmatism of the Earth and related strategic metal deposits 148
Acknowledgements
Authors thank Dr. A.R. Chakhmouradian, an anonymous reviewer for useful comments and suggestions, and Dr. Leonid Danyushevsky for handling the manuscript. This study was supported by the Russian Foundation for Basic Research (grant no. 16-35-00537-mol-a), Foundation of the President of the Russian Federation, grant No. MK-8990.2016.5 (in the part of single crystal X-ray analysis) as well as Russian Science Foundation, grant no. 14-17-00048 (in part of IR spectroscopy and thermal analysis).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editorial handling: L. Danyushevsky
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 15 kb)
Rights and permissions
About this article
Cite this article
Filina, M.I., Aksenov, S.M., Sorokhtina, N.V. et al. The new mineral fluorbarytolamprophyllite, (Ba,Sr,K)2[(Na,Fe2+)3TiF2][Ti2(Si2O7)2O2] and chemical evolution of lamprophyllite-group minerals in agpaitic syenites of the Kola Peninsula. Miner Petrol 113, 533–553 (2019). https://doi.org/10.1007/s00710-019-00664-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00710-019-00664-0