Skip to main content
Log in

Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The specific gray to almost black diamonds of rounded morphology are especially typical in alluvial placers of the northeastern part of the Siberian platform. The results of study of internal structure of these diamonds are presented. X-ray topography and birefringence patterns of polished plates of studied diamonds show their radial mosaic structure. Diamonds consists of slightly misorientated (up to 20′) subindividuals which are combined to mosaic wedge-shaped sectors. Electron back-scatter diffraction technique has demonstrated that subindividuals are often combined in the single large blocks (subgrains). The whole crystals commonly consist of several large subgrains misoriented up to 5° to one another. The total nitrogen content of these diamonds vary in the range 900–3300 ppm and nitrogen aggregation state (NB/(NB + NA)*100) from 25 to 64 %. Rounded diamond crystals of variety V are suggested to have been formed at the high growth rate caused by the high oversaturation of carbon in the crystallization medium. It may result in the splitting of growing crystal and their radial mosaic structure as a sequence. High content of structural nitrogen defects and the great number of mechanical impurities – various mineral and fluid inclusions may also favor to generation of this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afanas’ev VP, Zinchuk NN, Logvinova AM (2009) Distribution of placer diamonds related to Precambrian sources. Geol Ore Deposit 51:675–683. doi:10.1134/S1075701509080017

    Article  Google Scholar 

  • Afanas’ev VP, , Lobanov SS., Pokhilenko NP., Koptil VI, Mityukhin SI., Gerasimchuk AV., Pomazanskii BS., Gorev NI (2011) Polygenesis of diamonds in the Siberian Platform. Russ Geol Geophys 52:259–274. doi:10.1016/j.rgg.2011.02.001

  • Afanas’ev VP, Lobanov SS, Pokhilenko NP, Koptil’ VI, Mityukhin SI, Gerasimchuk AV, Pomazanskii BS, Gorev NI (2011) Polygenesis of diamonds in the Siberian Platform. Russ Geol Geophys 52:259–274. doi:10.1016/j.rgg.2011.02.001

    Article  Google Scholar 

  • Afanasyev VP, Agashev AM, Orihashi Y, Pokhilenko NP, Sobolev NV (2009) Paleozoic U-Pb age of rutile inclusions in diamonds of the V-VII variety from placers of the northeast Siberian Platform. Dokl Earth Sci 428:1151–1155. doi:10.1134/S1028334X09070253

    Article  Google Scholar 

  • Allègre CJ, Provost A, Jaupart C (1981) Oscillatory zoning: a pathological case of crystal growth. Nature 294:223–228. doi:10.1038/294223a0

  • Amorós JL, Buerger MJ, Amorós MC (1975) The Laue method. Academic Press, New York

  • Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320. doi:10.1016/S0024-4937(00)00049-9

    Article  Google Scholar 

  • Andreazza P, Kaminsky FV, Sablukov SM, Belousova EA, Tremblay M, Griffin WL (2008) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. 9th International Kimberlite Conference, 10–15 August 2008, Frankfurt, Germany. Extended Abstract No. 9IKC-A, p. 00004

  • Authier A (1978) Contrast of images in X-ray topography. In: Amelinckx S, Gevers R, Van Landuyt J (eds) Diffraction and imaging techniques in materials science. North Holland, Amsterdam, pp. 715–757

    Chapter  Google Scholar 

  • Baker JM (1998) A new proposal for the structure of platelets in diamond. Diam Relat Mater 7:1282–1290. doi:10.1016/S0925-9635(98)00188-5

    Article  Google Scholar 

  • Borzdov YM, Kupriyanov IN, Efremov AV, Pal’yanov YN (1999) Influence of nitrogen impurity on the diamond growth process in carbon-metal system. Crystals: growth, properties, real structure, applying: Extended abstract of IV international conference Vol. 1, VNIISIMS, Alexandrov, pp. 342–351 (in Russian)

  • Boyd SR, Kiflawi I, Woods GS (1994) The relationship between infrared absorption and the A defect concentration in diamond. Philos Mag B 69:1149–1153. doi:10.1080/01418639408240185

    Article  Google Scholar 

  • Bursill LA, Glaisher RW (1985) Aggregation and dissolution of small and extended defect structures in type Ia diamond. Am Mineral 70:608–618

    Google Scholar 

  • Calnan EA (1952) Laue asterism and deformation bands. Acta Crystallogr 5:557–563. doi:10.1107/S0365110X52001593

    Article  Google Scholar 

  • Capdevila R, Arndt N, Letendre J, Sauvage JF (1999) Diamonds in volcaniclastic komatiite from French Guiana. Nature 399:456–458. doi:10.1038/20911

  • Chepurov AI, Tomilenko AA, Shebanin AP, Sobolev NV (1994) Fluid inclusions in natural diamonds from placers of Yakutia. Dokl Akad Nauk 336:662–665 (in Russian)

    Google Scholar 

  • Chernov AA (1974) Stability of faceted shapes. J Cryst Growth 24–25:11–31. doi:10.1016/0022-0248(74)90277-2

  • Davies G (1976) The A nitrogen aggregate in diamond-its symmetry and possible structure. J Phys C Solid State 9:L537–L542. doi:10.1088/0022-3719/9/19/005

    Article  Google Scholar 

  • Evans T (1992) Aggregation of nitrogen in diamond. In: JE F (ed) The properties of natural and synthetic diamond. Academic Press, London, pp. 259–289

    Google Scholar 

  • Evans T, Qi Z (1982) The kinetics of the aggregation of nitrogen atoms in diamond. P Roy Soc A-Math Phy 381:159–178. doi:10.1098/rspa.1982.0063

  • Frank FC, Puttick KE, Wilks EM (1958) Etch pits and trigons on diamond: I. Philos Mag 3:1262–1272 doi:10.1080/14786435808233308

  • Fritsch E, Hainschwang T, Massi L, Rondeau B (2007) Hydrogen-related optical centers in natural diamond: an update. New Diam Front C Tec 17:63–89

    Google Scholar 

  • Fuchs F, Wild C, Schwarz K, Koidl P (1995) Hydrogen-related IR absorption in chemical vapour deposited diamond. Diam Relat Mater 4:652–656. doi:10.1016/0925-9635(94)05247-6

  • Götze J, Kempe U (2009) Physical principles of cathodoluminescence (CL) and its applications in geosciences. In: Gucsik A (ed) Cathodoluminescence and its application in the planetary sciences. Springer, Berlin Heildelberg, pp. 1–22

    Chapter  Google Scholar 

  • Grakhanov SA, Shatalov VI, Shtyrov VA, Kychkin VR, Suleimanov AM (2007) Diamond placers of Russia. Akademicheskoe Izd. “Geo”, Novosibirsk (in Russian)

  • Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999) The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310:1–35. doi:10.1016/S0040-1951(99)00156-0

    Article  Google Scholar 

  • Griffin WL, McGowan NM, Gonzalez-Jimenez JM, Belousova EA, Howell D, Afonso JC, Yang JS, Shi R, O’Reilly SY, Pearso NJ (2015) Transition-zone mineral assemblages in peridotite massifs, Tibet: implications for collision-zone dynamics and orogenic peridotites. Acta Geol Sin-Engl 89:90–91. doi:10.1111/1755-6724.12308_52

    Article  Google Scholar 

  • Grigor’ev DP, Zhabin AG (1975) Ontogeny of minerals. Nauka, Leningrad (in Russian)

  • Guinier A (1978) Advances in X-Ray and neutron diffraction techniques. In: Amelinckx S, Gevers R, Van Landuyt J (eds) Diffraction and imaging techniques in material science. North-Holland, Amsterdam, pp. 593–621

    Chapter  Google Scholar 

  • Haggerty SE (1995) Upper-mantle mineralogy. J Geodyn 20:331–364. doi:10.1016/0264-3707(95)00016-3

    Article  Google Scholar 

  • Howell D (2012) Strain-induced birefringence in natural diamond: a review. Eur J Mineral 24:575–585. doi:10.1127/0935-1221/2012/0024-2205

    Article  Google Scholar 

  • Howell D, Piazolo S., Dobson DP, Wood IG, Jones AP, Walte N, Frost DJ, Fisher D, Griffin WL (2012) Quantitative characterization of plastic deformation of single diamond crystals: A high pressure high temperature (HPHT) experimental deformation study combined with electron backscatter diffraction (EBSD). Diam Relat Mater 30:20–30. doi:10.1016/j.diamond.2012.09.003

  • Howell D, Griffin WL, Yang J, Gain S, Stern RA, Huang J-X, Jacob DE, Xu X, Stokes AJ, O’Reilly SY, Pearson HJ (2015) Diamonds in ophiolites: Contamination or a new diamond growth environment? Earth Planet Sci Lett 430:284–295. doi:10.1016/j.epsl.2015.08.023

    Article  Google Scholar 

  • Humphreys FJ (2001) Review grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci 36:3833–3854. doi:10.1023/A:1017973432592

    Article  Google Scholar 

  • Jones R, Goss JP (2002) Theory of aggregation of nitrogen in diamond. EMIS Datareviews Series 26:127–129

    Google Scholar 

  • Kaminsky F (2012) Mineralogy of the lower mantle: A review of 'super-deep' mineral inclusions in diamond. Earth Sci Rev 110:127–147 doi:10.1016/j.earscirev.2011.10.005

  • Kaminsky FV, Khachatryan GK (2001) Characteristics of nitrogen and other impurities in diamond, as revealed by infrared absorption data. Can Mineral 39:1733–1745. doi:10.2113/gscanmin.39.6.1733

    Article  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753. doi:10.1007/s004100000221

    Article  Google Scholar 

  • Kaminsky FV, Khachatryan GK, Andreazza P, Araujo D, Griffin WL (2009) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos 112:833–842. doi:10.1016/j.lithos.2009.03.036

    Article  Google Scholar 

  • Kamiya Y, Lang AR (1965) On the structure of coated diamonds. Philos Mag 11:347–356. doi:10.1080/14786436508221861

    Article  Google Scholar 

  • Khokhryakov AF, Pal’yanov YN (2004) Evolution of diamond morphology in the processes of mantle dissolution. Lithos 73:S57–S57

    Google Scholar 

  • Khokhryakov AF, Pal’yanov YN (2007) The evolution of diamond morphology in the process of dissolution: experimental data. Am Mineral 92:909–917. doi:10.2138/am.2007.2342

    Article  Google Scholar 

  • Khokhryakov AF, Palyanov YN (2015) Effect of crystal defects on diamond morphology during dissolution in the mantle. Am Mineral 100:1528–1532. doi:10.2138/am-2015-5131

    Article  Google Scholar 

  • Khokhryakov AF, Pal’yanov YN, Sobolev NV (2001) Evolution of crystal morphology of natural diamond in dissolution processes: Experimental data. Dokl Earth Sci 381:884–888

    Google Scholar 

  • Koptil VI (1994) Typomorphism of diamonds in the northeastern Siberian platform in the context of the problem of forecast and search for diamond placers. Dissertation, Institute of Mineralogy and Petrography SB RAS (in Russian)

  • Koreshkova MY, Downes H, Levsky L, Vladykin N (2011) Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia. J Petrol 52:1857–1885. doi:10.1093/petrology/egr033

    Article  Google Scholar 

  • Kuper KE, Zedgenizov DA, Ragozin AL, Shatsky VS (2009) X-ray topography of natural diamonds on the VEPP-3 SR beam. Nucl Instrum Meth A 603:170–173. doi:10.1016/j.nima.2008.12.145

    Article  Google Scholar 

  • Lang AR (1959a) The projection topograph: a new method in X-ray diffraction microradiography. Acta Crystallogr 12:249–250. doi:10.1107/S0365110X59000706

    Article  Google Scholar 

  • Lang AR (1959b) Studies of individual dislocations in crystals by X-ray diffraction microradiography. J Appl Phys 30:1748–1755. doi:10.1063/1.1735048

    Article  Google Scholar 

  • Lang A (1967) Causes of birefringence in diamond. Nature 213:248–251. doi:10.1038/213248a0

    Article  Google Scholar 

  • Lang AR (1974) Space-filling by branching columnar single-crystal growth: an example from crystallisation of diamond. J Cryst Growth 23:151–153. doi:10.1016/0022-0248(74)90117-1

    Article  Google Scholar 

  • Lang AR (1978) Techiques and interpretation in X-Ray topography. In: Amelinckx S, Gevers R, Van Landuyt J (eds) Modern diffraction and imaging techniques in material science. North-Holland, Amsterdam, pp. 623–714

    Chapter  Google Scholar 

  • Lang AR (1993) Topographic methods for studying defects in diamonds. Diam Relat Mater 2:106–114. doi:10.1016/0925-9635(93)90039-5

    Article  Google Scholar 

  • Logvinova AM, Wirth R, Tomilenko AA, Afanas’ev VP, Sobolev NV (2011) The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian platform. Russ Geol Geophys 52:1286–1297. doi:10.1016/j.rgg.2011.10.002

    Article  Google Scholar 

  • McGowan NM, Griffin WL, Gonzalez-Jimenez JM, Belousova E, Afonso JC, Shi R, McCammon CA, Pearson NJ, O’Reilly SY (2015) Tibetan chromitites: Excavating the slab graveyard. Geology 43:179–182. doi:10.1130/g36245.1

    Article  Google Scholar 

  • McNamara Rutledge KM, Scruggs BE, Gleason KK (1995) Influence of hydrogenated defects and voids on the thermal conductivity of polycrystalline diamond. J Appl Phys 77:1459–1462. doi:10.1063/1.358892

  • Metelkina M (1976) Associations of Precambrian diamond-bearing conglomerates. Int Geol Rev 18:1194–1200. doi:10.1080/00206817609471334

    Article  Google Scholar 

  • Mokievsky VP, Titova VM, Bartoshinsky ZV (1962) Manifestation of plastic deformation in diamonds and some problems related to crystal plasticity. Zapiski VMO 91:381–393 (in Russian)

    Google Scholar 

  • Moore M, Lang AR (1972) On the internal structure of natural diamonds of cubic habit. Philos Mag 26:1313–1325. doi:10.1080/14786437208220345

  • Orlov YL (1977) The mineralogy of diamond. John Wiley, New York

  • Orlov YL, Bulienkov NA, Martovitsky VP (1980) The spherocrystals of diamond - new type of natural single crystals having a fibrous structure. Dokl Akad Nauk SSSR 252:703–707 (in Russian)

    Google Scholar 

  • Orlov YL, Bulienkov NA, Martovitsky VP (1982) A study of the internal structure of variety III diamonds by X-ray section topography. Phys Chem Miner 8:105–111. doi:10.1007/BF00311280

    Article  Google Scholar 

  • Palyanov YN, Borzdov YM, Khokhryakov AF, Kupriyanov IN, Sokol AG (2010) Effect of nitrogen impurity on diamond crystal growth processes. Cryst Growth Des 10:3169–3175. doi:10.1021/cg100322p

    Article  Google Scholar 

  • Parfenov L, Kuzmin M (2001) Tectonics, geodynamics and metallogeny of the territory of the Republic of Sakha (Yakutia). Nauka/Interperiodika, Moscow (in Russian)

  • Punin JO (1981) Splitting of crystals. Zapiski VMO 6:666–686 (in Russian)

    Google Scholar 

  • Ragozin AL, Shatsky VS, Rylov GM, Goryainov SV (2002) Coesite inclusions in rounded diamonds from placers of the northeastern Siberian platform. Dokl Earth Sci 384:385–389

    Google Scholar 

  • Ragozin AL, Shatskii VS, Zedgenizov DA (2009) New data on the growth environment of diamonds of the variety V from placers of the northeastern Siberian platform. Dokl Earth Sci 425:436–440. doi:10.1134/s1028334x09030192

    Article  Google Scholar 

  • Rosen OM, Levskii LK, Zhuravlev DZ, Rotman AY, Spetsius ZV, Makeev AF, Zinchuk NN, Manakov AV, Serenko VP (2006) Paleoproterozoic accretion in the Northeast Siberian craton: Isotopic dating of the Anabar collision system. Stratigr Geol Correl 14:581–601. doi:10.1134/s0869593806060013

    Article  Google Scholar 

  • Shatskii VS, Rylov GM, Efimova ES, De Corte K, Sobolev NV (1998) The morphology and real structure of microdiamonds from the Kokchetav massif metamorphic rocks, kimberlites, and alluvial placers. Russ Geol Geophys 39:942–955

    Google Scholar 

  • Shatsky VS, Sobolev NV, Vavilov MA (1995) Diamond-bearing metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). In: Coleman RG, Wang X (eds) Ultrahigh Pressure Metamorphism.   Cambridge University Press, New York, pp 427–455

  • Shatsky VS, Zedgenizov DA, Ragozin AL, Kalinina VV (2014) Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins. Eur J Mineral 26:41–52. doi:10.1127/0935-1221/2013/0025-2347

    Article  Google Scholar 

  • Shatsky VS, Zedgenizov DA, Ragozin AL, Kalinina VV (2015) Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res 28:106–120. doi:10.1016/j.gr.2014.03.018

    Article  Google Scholar 

  • Shtukenberg AG, Punin YO, Gunn E, Kahr B (2012) Spherulites. Chem Rev 112:1805–1838. doi:10.1021/cr2000297f

    Article  Google Scholar 

  • Smelov AP, Shatsky VS, Ragozin AL, Reutskii VN, Molotkov AE (2012) Diamondiferous Archean rocks of the Olondo greenstone belt (western Aldan–Stanovoy shield). Russ Geol Geophys 53:1012–1022. doi:10.1016/j.rgg.2012.08.005

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Frezzotti ML, Afanasiev VP (2014) N-rich fluid inclusions in octahedrally-grown diamond. Earth Planet Sci Lett 393:39–48. doi:10.1016/j.epsl.2014.02.033

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Frezzotti ML, Afanasiev VP (2015) Fluid inclusions in Ebelyakh diamonds: Evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit. Lithos 216–217:106–117. doi:10.1016/j.lithos.2014.12.010

  • Sobolev NV (1977) Deep seated inclusions in kimberlites and the problem of the composition of the upper mantle. AGU, Washington, D.C. doi:10.1029/SP011

  • Sobolev EV, Lisoivan VI (1971) Impurity Centers in Diamonds. Abstracts of 8th Scientific Conference. Nauka, Novosibirsk, pp. 60–61

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorfic rocks: a new environment for diamond formation. Nature 343:742–746. doi:10.1038/343742a0

  • Sobolev EV, Lisoyvan VI (1972) About nature of the diamonds of transition type. Dokl Akad Nauk SSSR 204:88–91 (in Russian)

    Google Scholar 

  • Solodova YP, Podol’skikh LD, Litvin AT, Kulakov VM, Butuzov VP, Samoilovich MI (1975) Structural features of natural diamonds of variety. V. Kristalogafiya 20:90–95

    Google Scholar 

  • Sozin Y, Belyankina A, Vishnevsky A (1974) The substructure of synthetic diamond single crystals. Synthetic Diamond 3:11–15 (in Russian)

    Google Scholar 

  • Stachel T, Harris J (2008) The origin of cratonic diamonds – constraints from mineral inclusions. Ore Geol Rev 34:5–32. doi:10.1016/j.oregeorev.2007.05.002

    Article  Google Scholar 

  • Sunagawa I (1984) Growth of crystals in nature. In: Sunagawa I (ed) Materials Science of the Earth’s Interior. Terrapub, Tokyo, pp. 63–105

    Google Scholar 

  • Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable contitions. J Cryst Growth 99:1156–1161. doi:10.1016/S0022-0248(08)80100-5

    Article  Google Scholar 

  • Tang J, Alivisatos AP (2006) Crystal splitting in the growth of Bi2S3. Nano Lett 6:2701–2706

    Article  Google Scholar 

  • Tolansky S (1966) Birefringence of diamond. Nature 211:158–160. doi:10.1021/nl0615930

    Article  Google Scholar 

  • Tomilenko AA, Chepurov AI, Palyanov YN, Pokhilenko LN, Shebanin AP (1997) Volatile components in the upper mantle (from data on fluid inclusions). Russ Geol Geophys 38:294–303

    Google Scholar 

  • Tomilenko AA, Ragozin AL, Shatskii VS, Shebanin AP (2001a) Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl Earth Sci 379:571–574

    Google Scholar 

  • Tomilenko AA, Ragozin AL, Shatsky VS, Shebanin AP (2001b) Fluid inclusions in natural diamonds. In: Noronha F, Dória A, Guedes A. (eds) Abstracts of XVI ECROFI European Current Research On Fluid Inclusions Memória n. 7, Departamento de Geologia, Porto, pp. 439–442. doi:10.13140/RG.2.1.2672.8084

  • Ul’yanova TP, Punin YO, Petrov TG (1984) Trends in crystal splitting during growth. In: AA C (ed) Growth of Crystals Volume 12. Springer, Boston, pp. 135–140. doi:10.1007/978-1-4615-7116-2_22

    Google Scholar 

  • Van den Kerkhof A, Thiéry R (2001) Carbonic inclusions. Lithos 55:49–68. doi:10.1016/S0024-4937(00)00038-4

    Article  Google Scholar 

  • Woods GS, Collins AT (1983) Infrared absorption spectra of hydrogen complexes in type I diamonds. J Phys Chem Solids 44:471–475. doi:10.1016/j.rgg.2015.01.021

  • Woods G (1986) Platelets and the infrared absorption of type Ia diamonds. P Roy Soc Lond A Mat 407:219–238. doi:10.1098/rspa.1986.0094

    Article  Google Scholar 

  • Woods GS, Purser GC, Mtimkulu ASS, Collins AT (1990) The nitrogen-content of type Ia natural diamonds. J Phys Chem Solids 51:1191–1197. doi:10.1016/0022-3697(90)90101-k

    Article  Google Scholar 

  • Yang J-S, Robinson PT, Dilek Y (2014) Diamonds in Ophiolites. Elements 10:127–130. doi:10.2113/gselements.10.2.127

    Article  Google Scholar 

  • Yang J, Meng F, Xu X, Robinson PT, Dylek Y, Makeyev AB, Wirth R, Wiedenbeck M, Cliff J (2015) Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res 27:459–485. doi:10.1016/j.gr.2014.07.004

    Article  Google Scholar 

  • Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer, New York

  • Zedgenizov DA, Shatsky VS, Panin AV, Evtushenko OV, Ragozin AL, Kagi H (2015) Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit (Brazil). Russ Geol Geophys 56:296–305. doi:10.1016/j.rgg.2015.01.021

    Article  Google Scholar 

  • Zinchuk NN, Koptil VI (2003) Typomorphism of diamonds in the Siberian Craton. Nedra, Moscow (in Russian)

Download references

Acknowledgments

This study was supported by the Russian Science Foundation under Grant No. 14-27-00054. The manuscript benefited from the constructive comments by Felix V. Kaminsky, an anonymous reviewer, and handling editor Dogan Paktunc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ragozin.

Additional information

Editorial handling: D. Paktunc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragozin, A.L., Zedgenizov, D.A., Kuper, K.E. et al. Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform. Miner Petrol 110, 861–875 (2016). https://doi.org/10.1007/s00710-016-0456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0456-0

Keywords

Navigation