Skip to main content
Log in

Cretaceous metamorphism in the Austroalpine Matsch Unit (Eastern Alps): The interrelation between deformation and chemical equilibration processes

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the polymetamorphic Austroalpine Matsch Unit (European Eastern Alps) Cretaceous upper greenschist facies metamorphism overprinted Variscan and Permian magmatic and metamorphic assemblages. Mineral compositional and (micro-)structural data of metapelites and metapegmatites document different mechanisms of interrelated deformation and (re-)equilibration during Cretaceous overprinting: i) Microfractures in relic garnet represented pathways for material transport, and thus established material exchange between intragranular domains and the matrix. Major element equilibration by fast diffusion along microfractures contrasts with limited volume diffusion in adjacent host garnet. ii) Syn-tectonic breakdown of staurolite initially to paragonite, then chloritoid allows correlating reaction progress with the formation of different fracture sets. iii) Syn-tectonic mineral growth with shape-preferred orientation in foliation domains contrasts with radial growth in microlithons and strain shadows of the mylonitic foliation. iv) Syn-tectonic unmixing of pre-existing oligoclase (an14–16) produced fine-grained aggregates of two supposedly coexisting plagioclase-phases (an3–6 and an20–25) in strain shadows of the oligoclase-clasts. v) Pre-existing deformation-induced heterogeneities in the spatial distribution of phases and their preferred orientation influence the kinetics of phase equilibration. Understanding the mechanisms of the mutual interrelation between deformation and phase equilibration is a prerequisite for deducing PT-constraints from strained metamorphic rocks. New garnet—whole rock Sm-Nd data from metapegmatites indicate their emplacement at 263–280 Ma and provide an important age constraint on the interrelated deformation and re-equilibration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ault AK, Selverstone J (2008) Microtextural constraints on the interplay between fluid-rock reactions and deformation. Contrib Mineral Petrol 156:501–515

    Article  Google Scholar 

  • Beach A (1979) Pressure solution as a metamorphic process in deformed terrigenous sedimentary rocks. Lithos 12:51–58

    Article  Google Scholar 

  • Bockemühl CJ (1988) Der Marteller Granit. PhD thesis, University of Basel, 144 pages

  • Carlson WD (2002) Scales of disequilibrium and rates of equilibration during metamorphism. Am Mineral 87:185–204

    Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorphic Geol 20:683–696

    Article  Google Scholar 

  • De Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51:2639–2652

    Article  Google Scholar 

  • Dempster TJ, Tanner PWG (1997) The biotite isograd Central Pyrenees: a deformation-controlled reaction. J Metamorphic Geol 15:531–548

    Article  Google Scholar 

  • deRonde AA, Heilbronner R, Stünitz F, Tullis J (2004) Spatial correlation of deformation and mineral reaction in experimentally deformed plagioclase-olivine aggregates. Tectonophysics 389:93–109

    Article  Google Scholar 

  • deRonde AA, Stünitz F, Tullis J, Heilbronner R (2005) Reaction-induced weakening of plagioclase-olivine composites. Tectonophysics 409:85–106

    Article  Google Scholar 

  • deRonde AA, Stünitz F (2007) Deformation-enhanced reaction in experimentally deformed plagioclase-olivine aggregates. Contrib Mineral Petrol 153:699–717

    Article  Google Scholar 

  • Durney DW (1972) Solution-transfer, an Important Geological Deformation Mechanism. Nature 235:315

    Article  Google Scholar 

  • Froitzheim N, Schmid SM, Conti P (1994) Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden. Eclogae Geol Helv 87:559–612

    Google Scholar 

  • Froitzheim N, Conti P, van Daalen M (1997) Late Cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the Eastern Alps. Tectonophysics 280:267–293

    Article  Google Scholar 

  • Goergen ET, Whitney DL, Zimmerman ME, Hiraga T (2008) Deformation-induced polymorphic transformation; experimental deformation of kyanite, andalusite, and sillimanite. Tectonophysics 454:23–35

    Article  Google Scholar 

  • Gregnanin A, Piccirillo EM (1974) Hercynian metamorphism in the Austridic crystalline basement of the Passiria and Venosta Alps (Alto Adige). Mem Soc Geol It 18:13–27

    Google Scholar 

  • Haas R (1985) Zur Metamorphose des südlichen Ötztalkristallins unter besonderer Berücksichtigung der Matscher Einheit (Vinschgau / Südtirol). PhD thesis, University of Innsbruck, 118 pages

  • Hammer W (1912) Blatt 5345 Glurns und Ortler (mit Erläuterungen), 1:75000, Geologische Spezialkarte der Österreichisch-Ungarischen Monarchie, k .k. Geologische Reichsanstalt, Wien

  • Heidelbach F, Terry MP, Bystricky M, Holzapfel C, McCammon C (2009) A simultaneous deformation and diffusion experiment: Quantifying the role of deformation in enhancing metamorphic reactions. Earth Planet Sci Lett 278:386–394

    Article  Google Scholar 

  • Hodges KV, Spear FS (1982) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. Am Mineral 67:1118–1134

    Google Scholar 

  • Holland TJB, Powell R (1992) Plagioclase feldspars: Activity-composition relations based upon Darken´s quadratic formalism and Landau theory. Am Mineral 77:53–61

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorphic Geol 16:309–343

    Article  Google Scholar 

  • Holyoke CW, Tullis J (2006) The interaction between reaction and deformation: an experimental study using a biotite + plagioclase + quartz gneiss. J Metamorphic Geol 24:743–762

    Article  Google Scholar 

  • Hürzeler J-P, Abart R (2008) Fluid flow and rock alteration along the Glarus thrust. Swiss Journal of Geosciences 101:251–268

    Article  Google Scholar 

  • Imon R, Okudaira T, Fujimoto A (2002) Dissolution and precipitation processes in deformed amphibolites: an example from the ductile shear zone of the Ryoke metamorphic belt, SW Japan. J Metamorphic Geol 20:297–308

    Article  Google Scholar 

  • Keller LM, Abart R, Wirth R, Schmid DW, Kunze K (2006) Enhanced mass transfer through short-circuit diffusion; growth of garnet reaction rims at eclogite facies conditions. Am Mineral 91:1024–1038

    Article  Google Scholar 

  • Keller LM, Hauzenberger CA, Abart R (2007) Diffusion along interphase boundaries and its effect on retrograde zoning patterns of metamorphic minerals. Contrib Mineral Petrol 154:205–216

    Article  Google Scholar 

  • Kerschhofer L, Dupas C, Liu M, Sharp TG, Durham WB, Rubie DC (1998) Polymorphic transformations between olivine, wadsleyite and ringwoodite; mechanisms of intracrystalline nucleation and the role of elastic strain. Mineral Mag 62:617–638

    Article  Google Scholar 

  • Mahar EM, Baker JM, Powell R, Holland TJB, Howell N (1997) The effect of Mn on mineral stability in metapelites. J Metamorphic Geol 15:223–238

    Article  Google Scholar 

  • Mair V, Schuster R (2003) The metamorphic evolution of the Ortler Crystalline. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 148:215–217

    Google Scholar 

  • Mancktelow N (2007) Tectonic pressure: Theoretical concepts and modelled examples. Lithos 103:149–177

    Article  Google Scholar 

  • Milke R, Abart R, Kunze K, Koch-Müller M, Schmid DW, Ulmer P (2009) Matrix rheology effects on reaction rim growth I: evidence from orthopyroxene rim growth experiments. J Metamorphic Geol 27:71–82

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer-Verlag, Berlin Heidelberg New York, p 366

    Google Scholar 

  • Potro MN (1982) Petrographie, Metamorphose, Tektonik und Metallogenese im mittleren Vinschgau / Südtirol (N-Italien). PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 325 pages

  • Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model "PAP". In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. pp 31–75

  • Powell R, Holland TJB, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorphic Geol 16:577–588

    Article  Google Scholar 

  • Powell R, Holland TJB (1999) Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas. Am Mineral 84:1–14

    Google Scholar 

  • Purtscheller F, Haas R, Hoinkes G, Mogessie A, Tessadri R, Veltman C (1987) Eoalpine metamorphism in the Crystalline Basement. In: Flügel HW, Faupl P. Vienna (eds) Geodynamics of the Eastern Alps. Deuticke, pp 185–190

  • Putnis A (2002) Mineral replacement reactions; from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Ratschiller LK (1953) Beiträge zur regionalen Petrographie des Vintschgau-Gebietes (Südtirol). N Jb Mineral (Abh) 85:247–302

    Google Scholar 

  • Schmid SM, Haas R (1989) Transition from near-surface thrusting to intrabasement decollement, Schlinig thrust, Eastern Alps. Tectonics 8:697–718

    Article  Google Scholar 

  • Schuster R, Stüwe K (2008) Permian metamorphic event in the Alps. Geology 36:603–606

    Article  Google Scholar 

  • Selverstone J, Hyatt J (2003) Chemical and physical responses to deformation in micaceous quartzites from the Tauern Window Eastern Alps. J Metamorphic Geol 21:335–345

    Google Scholar 

  • Selverstone J (2005) Preferential embrittlement of graphitic schists during extensional unroofing in the Alps: the effect of fluid composition on rheology in low-permeability rocks. J Metamorphic Geol 23:461–470

    Article  Google Scholar 

  • Siivola J, Schmid R (2007) List of mineral abbreviations. In: Fettes D, Desmons J (eds) Metamorphic Rocks: A Classification and Glossary of Terms. New York: Cambridge University Press, pp 93–110

  • Sölva H, Grasemann B, Thöni M, Thiede RC, Habler G (2005) The Schneeberg Normal Fault Zone: Normal faulting associated with Cretaceous SE-directed extrusion in the Eastern Alps (Italy/Austria). Tectonophysics 401:143–166

    Article  Google Scholar 

  • Spalla MI, Zucali M, Di Paola S, Gosso G (2005) A critical assessment of the tectono-thermal memory of rocks and definition of tectono-metamorphic units: evidence from fabric and degree of metamorphic transformations. Geological Society, London, Special Publications 243:227–247

    Article  Google Scholar 

  • Steffen KJ, Selverstone J (2006) Retrieval of P-T information from shear zones: thermobarometric consequences of changes in plagioclase deformation mechanisms. Contrib Mineral Petrol 151:600–614

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) Dynamic recrystallization of quartz; correlation between natural and experimental conditions. Geological Society of London, Special Publications 200:171–190

    Google Scholar 

  • Stünitz F (1998) Syndeformational recrystallization iu dynamic or compositionally induced? Contrib Mineral Petrol 131:219–236

    Article  Google Scholar 

  • Stünitz F, Tullis E (2001) Weakening and strain localization produced by syn-deformational reaction of plagioclase. International Journal of Earth Sciences 90

  • Stüwe K (1997) Effective bulk compositional changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib Mineral Petrol 129:43–52

    Article  Google Scholar 

  • Thöni M (1980) Zur Westbewegung der Ötztaler Masse. Räumliche und zeitliche Fragen an der Schlinigüberschiebung. Mitt Ges Geol Bergbaustud Österr 26:247–275

    Google Scholar 

  • Thöni M (1986) The Rb-Sr thin slab isochron method - an unreliable geochronologic method for dating geologic events in polymetamorphic terrains? Evidence from the Austroalpine basement nappe, the Eastern Alps. Mem Sci Geol 38:283–352

    Google Scholar 

  • Thöni M (2003) Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm-Nd chronometry. Chem Geol 194:353–379

    Article  Google Scholar 

  • Tropper P, Hoinkes G (1996) Geothermobarometry of Al2SiO5 bearing metapelites in the western Austroalpine Ötztal basement. Mineral Petrol 58:145–170

    Article  Google Scholar 

  • Tropper P, Recheis A (2003) Garnet zoning as a window into the metamorphic evolution of a crystalline complex: the northern and central Austroalpine Ötztal-Complex as a polymorphic example. Mitteilungen der Österreichischen Geologischen Gesellschaft 94:27–53

    Google Scholar 

  • Vernon RH (2004) A practical guide to Rock Microstructure. Cambridge University Press, Cambridge, p 594

    Google Scholar 

  • Williams ML (1994) Sigmoidal inclusion trails, punctuated fabric development, and interactions between metamorphism and deformation. J Metamorph Geol 12:1–21

    Article  Google Scholar 

  • Wintsch RP, Yi K (2002) Dissolution and replacement creep: a significant deformation mechanism in mid-crustal rocks. J Struct Geol 24:1179–1193

    Article  Google Scholar 

  • Wintsch RP, Aleinikoff JN, Yi K (2005) Foliation development and reaction softening by dissolution and precipitation in the transformation of granodiorite to orthogneiss, Glastonburg Complex, Connecticut, USA. Can Mineral 43:327–347

    Article  Google Scholar 

  • Yund RA, Tullis J (1991) Compositional changes of minerals associated with dynamic recrystallization. Contrib Mineral Petrol 108:346–355

    Article  Google Scholar 

Download references

Acknowledgement

The study has been funded by the Austrian Science Fund FWF in the projects P15644-GEO (fieldwork, sampling, (micro-)structural investigations, geochronology, EPMA-analyses) and T319-N10 (EPMA-analyses, thermodynamic modelling, data-compilation). The authors thank the Dept. for Lithospheric Research at the University of Vienna (Austria) for providing the facilities for project execution, major element analysis (EPMA) and isotopic investigations (ID-TIMS). T. Ntaflos and F. Kiraly are thanked for technical assistance with EPM-analytics. J. Selverstone and an anonymous reviewer are thanked for their critical comments, which helped to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlinde Habler.

Additional information

Editorial handling: F. Gaidies and T. John

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habler, G., Thöni, M. & Grasemann, B. Cretaceous metamorphism in the Austroalpine Matsch Unit (Eastern Alps): The interrelation between deformation and chemical equilibration processes. Miner Petrol 97, 149 (2009). https://doi.org/10.1007/s00710-009-0094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00710-009-0094-x

Keywords