Skip to main content
Log in

Primary carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes (Hungary)

  • Original Article
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We studied clinopyroxene–apatite–K-feldspar–phlogopite xenoliths (CAKP), collected from the Late Cretaceous lamprophyre dikes of the Alcsútdoboz-2 (Ad-2) borehole, Transdanubian Central Range, Hungary. Apatite and K-feldspar contain a large number of primary, negative crystal shaped carbonatite melt inclusions. Chemically, the melt inclusions are phosphorous dolomitic in apatite and dolomite-bearing alkaline-aluminosiliceous in K-feldspar. As these melts in apatite and K-feldspar cannot be the differentiation product or residuum of each other, and appear to have been present in the host rock at the same time, they are likely to have formed by liquid immiscibility. Clinopyroxene and phlogopite are interpreted as products of metasomatic reactions between ultramafic mantle and carbonatite melt initially infiltrating the mantle rock. During this process the composition of the metasomatizing carbonatite melt changed, resulting in the separation of two immiscible melts. One melt was phosphate carbonatite in composition, and the other was a carbonate-bearing alkaline aluminosiliceous melt. Both melts were over-saturated with respect to apatite and K-feldspar. This process initiated the crystallization of the host minerals from a continuously percolating melt and, consequently, led to the entrapment of large populations of melt inclusions. The initial metasomatizing melt had a phosphorous Mg-calcitic carbonatite composition (with low Mg#), and is likely to have been formed in a subducted lithospheric slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen T, O'Reilly SY, Griffin WL (1984) The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism. Contrib Mineral Petrol 88:72–85

    Article  Google Scholar 

  • Aoki K, Shiba I (1973) Pyroxenes from lherzolite inclusions of Itinomegata, Japan. Lithos 6:41–51

    Article  Google Scholar 

  • Azbej T, Szabó C, Bodnar RJ, Dobosi G (2006) Genesis of carbonate aggregates in lamprophyres from the northeastern Transdanubian Central Range, Hungary: magmatic or hydrothermal origin? Mineral Petrol 88:479–497

    Article  Google Scholar 

  • Baker MB, Wyllie PJ (1992) High pressure apatite solubility in carbonate-rich liquids: implications for mantle metasomatism. Geochim Cosmochim Acta 56:3409–3422

    Article  Google Scholar 

  • Bali E, Szabó C, Vaselli O, Török K (2002) Significance of silicate melt pockets in upper mantle xenoliths from the Bakony–Balaton Highland Volcanic Field, Western Hungary. Lithos 61:79–102

    Article  Google Scholar 

  • Bulakh AG, Ivanikov VV, Orlova MP (2004) Overview of carbonatite–phoscorite complexes of the Kola Alkaline Province in the context of a Scandinavian North Atlantic Alkaline Province. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. vol. 10, pp 1–37. Mineralogical Society of Great Britain and Ireland, London

    Google Scholar 

  • Carpenter RL, Edgar AD, Thibault Y (2002) Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineral Petrol 74:149–162

    Article  Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56

    Article  Google Scholar 

  • Dalton JA, Wood BJ (1993) The composition of primary carbonate melts and their evolution through wall rock reaction in the mantle. Earth Planet Sci Lett 119:511–525

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135

    Article  Google Scholar 

  • Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonnay Z (2004) Trace element and C–O–Sr–Nd isotope evidence for subduction-related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75:89–113

    Article  Google Scholar 

  • Dobosi G, Jenner GJ (1999) Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nógrád volcanic province, north Hungary: a study by laser ablation microprobe—inductively coupled plasma—mass spectrometry. Lithos 46:731–749

    Article  Google Scholar 

  • Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). N Jahrb Mineral Abh 178(3):217–237

    Article  Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinell peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Mineral Petrol 109:340–354

    Article  Google Scholar 

  • Downes H, Balaganskaya E, Beard A, Liferovich R, Demaiffe D (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review. Lithos 85:48–75

    Article  Google Scholar 

  • Edgar AD, Arima M, Baldwin DK, Bell DR, Shee SR, Skinner MW, Walker EC (1988) High pressure high temperature melting experiments on a SiO2-poor aphanitic kimberlite from the Wesselton mine, Kimberley, South Africa. Am Mineral 73:524–533

    Google Scholar 

  • Eggler DH (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite–H2O–CO2 system. Am J Sci 278:305–343

    Google Scholar 

  • Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1989) Petrology and geochemistry of peridotite xenoliths in alkali basalts from the Transdanubian Volcanic Region, West Hungary. J Petrol 30:79–105

    Google Scholar 

  • Frezzotti M-L, Touret JLR, Lustenhouver WJ, Neumann E-R (1994) Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary Islands: tracking the mantle metasomatic fluids. Eur J Mineral 6:805–817

    Google Scholar 

  • Frezzotti M-L, Andersen T, Neumann E-R, Simonsen SL (2002) Carbonatite melt-CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid-rock interaction in the upper mantle. Lithos 64:77–96

    Article  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Article  Google Scholar 

  • Greenough JD (1988) Minor phases in the Earth’s mantle: evidence from trace- and minor-element patterns in primitive alkaline magmas. Chem Geol 69:177–192

    Article  Google Scholar 

  • Guzmics T, Zajacz Z, Kodolányi J, Werner H, Szabó C (2008) LA-ICP-MS study of apatite- and K-feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: implication for significance of carbonatite melts in the Earth’s mantle. Geochim Cosmochim Acta 72:1864–1886

    Article  Google Scholar 

  • Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Harte B, Kirkley MB (1997) Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chem Geol 136:1–24

    Article  Google Scholar 

  • Hauri EH, Shimizu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227

    Article  Google Scholar 

  • Huang WL, Wyllie PJ (1974) Eutectic between wollastonite II and calcite constrained with thermal barrier in MgO-SiO2-CO2 at 30 kbar, with application to kimberlite–carbonatite petrogenesis. Earth Planet Sci Lett 24:305–310

    Article  Google Scholar 

  • Hunter RH, McKenzie D (1989) The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet Sci Lett 92:347–356

    Article  Google Scholar 

  • Huang WL, Wyllie PJ, Nehru CE (1980) Subsolidus and liquidus phase relationships in the system CaO–SiO2–CO2 to 30 kbar with geological applications. Am Mineral 65:285–301

    Google Scholar 

  • Ionov DA, O’Reilly SY, Genshaft YS, Kopylova MG (1996) Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence. Contrib Mineral Petrol 125:375–392

    Article  Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic process within the mantle. Am J Sci 280:389–426

    Google Scholar 

  • Karchevsky PI, Moutte J (2004) The phoscorite–carbonatite complex of Vuoriyarvi, Kola Peninsula. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. vol. 10, pp 163–185 Mineralogical Society of Great Britain and Ireland, London

    Google Scholar 

  • Kázmér M, Kovács S (1985) Permian-Paleogene paleogeo?graphy along the eastern part of the Insubric–Periadriatic Lineament system: evidence for continental escape of the Bakony-Drauzug Unit. Acta Geol Hung 28:71–84

    Google Scholar 

  • Kjarsgaard B, Peterson T (1991) Nephelinite-carbonatite liquid immiscibility at Shombole Volcano, East Africa: petrographic and experimental evidence. Mineral Petrol 43:293–314

    Article  Google Scholar 

  • Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Mineral 88:639–646

    Google Scholar 

  • Kogarko LN, Krigman LD, Petrova YN, Solovova IP (1977) Phase equilibria in the fluorapatite–nepheline–diopside system and the origin of the Khibiny apatite deposits. Geokhimiya Translations 1:42–55

    Google Scholar 

  • Kogarko LN, Henderson CMB, Pacheco H (1995) Primary Ca-rich carbonatite magma and carbonate-silicate-sulfide liquid immiscibility in the upper mantle. Contrib Mineral Petrol 121:267–274

    Article  Google Scholar 

  • Kovács I, Zajacz Z, Szabó C (2004) Type-II xenoliths and related metasomatism from the Nógrád-Gömör Volcanic Field, Carpathian–Pannonian region (northern Hungary-southern Slovakia). Tectonophysics 393:139–161

    Article  Google Scholar 

  • Le Bas MJ (1977) Carbonatite–nephelinite volcanism. Wiley-Interscience, Bristol, Great Britain

    Google Scholar 

  • Lee WJ, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO—(MgO + FeO*)—(Na2O + K2O)—(SiO2 + Al2O3 + TiO2)—CO2. J Petrol 39:495–517

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (2000) The system CaO–MgO–SiO2–CO2 at 1 GPa, metasomatic wehrlites and primary carbonatite magmas. Contrib Mineral Petrol 138:214–228

    Article  Google Scholar 

  • Lee CT, Rudnick RL, McDonough WF, Horn I (2000a) Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania. Contrib Mineral Petrol 139:470–484

    Article  Google Scholar 

  • Lee WJ, Huang WL, Wyllie PJ (2000b) Melts in the mantle modeled in the system CaO–MgO–SiO2–CO2 at 2.7 GPa. Contrib Mineral Petrol 138:199–213

    Article  Google Scholar 

  • Lloyd FE (1987) Characterization of mantle metasomatic fluid in spinel lherzolites and alkali clinopyroxenites from the west Eifel and south west Uganda. In: Hawkesworth CJ, Menzies MA (eds) Mantle metasomatism. Academic, London, pp 91–122

    Google Scholar 

  • Mitchell RH (1986) Kimberlites, mineralogy, geochemistry and petrology. Plenum, New York

    Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum, New York

    Google Scholar 

  • Nadeau S, Pineau F, Javoy M, Francis D (1990) Carbon concentrations and isotopic ratios in fluid-inclusion-bearing upper-mantle xenoliths along the northwestern margin of North America. Chem Geol 81:271–297

    Article  Google Scholar 

  • Nag K, Arima M, Gupta AK (2007) Experimental study of the joins forsterite–diopside–leucite– and forsterite–leucite åkermanite up to 2.3 GPa [P(H2O) = P(Total)] and variable temperatures: Its petrological significance. Lithos 98:177–194

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527

    Article  Google Scholar 

  • Pyle JM, Haggerty SE (1994) Silicate carbonate liquid immiscibility in upper mantle eclogites: implications for natrosilicic and carbonatitic conjugate melts. Geochim Cosmochim Acta 58:2997–3011

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. In: Ribbe PH (ed) Reviews in mineralogy 12, Chelsea 646 p

  • Roedder E (1987) Silicate liquid immiscibility in magmas. In: Yoder HS (ed) The evolution of the igneous rocks. Princeton University Press, Princeton, pp 15–58

    Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle—petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Ryabchikov ID, Hamilton DL (1993) Interaction of carbonate-phosphate melts with mantle peridotites at 20–35 kbar. S Afr J Geol 96:143–148

    Google Scholar 

  • Safonov OG, Perchuk LL, Litvin YA (2007) Melting relations in the chloride–carbonate–silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle. Earth Planet Sci Lett 253:112–128

    Article  Google Scholar 

  • Schmidberger SS, Francis D (1999) Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites. Lithos 48:195–216

    Article  Google Scholar 

  • Schrauder M, Navon O (1993) Solid carbon dioxide in natural diamond. Nature 365:42–44

    Article  Google Scholar 

  • Seitz HM, Altherr R, Ludwig T (1999) Partitioning of transition elements between orthopyroxene and clinopyroxene in peridotitic and websteritic xenoliths: New empirical geothermometers. Geochim Cosmochim Acta 63:3967–3982

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society of London, London, pp 313–345

    Google Scholar 

  • Sweeney RJ (1994) Carbonatite melt composition in the Earth’s mantle. Earth Planet Sci Lett 128:259–270

    Article  Google Scholar 

  • Szabó C (1985) Xenoliths from Cretaceous lamprophyres of Alcsútdoboz-2 borehole, Transdanubian Central Mountains, Hungary. Acta Mineral Petrogr 27:39–50

    Google Scholar 

  • Szabó C, Taylor LA (1994) Mantle petrology and geochemistry beneath the Nográd-Gömör volcanic field, Carpathian–Pannonian region. Inter Geol Rev 36:328–358

    Article  Google Scholar 

  • Szabó C, Bodnar RJ (1996) Changing magma ascent rates in the Nógrád-Gömör volcanic field northern Hungary/southern Slovakia: evidence from CO2-rich fluid inclusions in metasomatized upper mantle xenoliths. Petrology 4:221–230

    Google Scholar 

  • Szabó C, Kubovics I, Molnár Z (1993) Alkaline lamprophyre and related dyke rocks in NE Transdanubia, Hungary: the Alcsútdoboz-2 (AD-2) borehole. Mineral Petrol 47:127–148

    Article  Google Scholar 

  • Tari G (1994) Alpine tectonics of the Pannonian Basin. Ph.D. thesis, Rice University, Houston, Texas

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. Am Mineral 77:784–794

    Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31

    Article  Google Scholar 

  • Török K, Dégi J, Szép A, Marosi G (2005) Reduced carbonic fluids in mafic granulite xenoliths from the Bakony–Balaton Highland Volcanic Field, W-Hungary. Chem Geol 223:93–108

    Article  Google Scholar 

  • Van Achterbergh E, Griffin WL, Ryan CG, O'Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30:743–746

    Article  Google Scholar 

  • Van Achterbergh E, Griffin WL, Ryan CG, O'Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2004) Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76:461–474

    Article  Google Scholar 

  • Vaselli O, Downes H, Thirlwall MF, Dobosi G, Coradossi N, Seghedi I, Szakács A, Vanucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the eastern Transsylvanian Basin: depleted mantle enriched by vein metasomatism. J Petrol 36:23–55

    Google Scholar 

  • Vaselli O, Downes H, Thirlwall MF, Coradossi N (1996) Spinel-peridotite xenoliths from Kapfenstein (Graz Basin, Eastern Austria): a geochemical and petrological study. Mineral Petrol 57:23–50

    Article  Google Scholar 

  • Veksler IV, Lentz D (2006) Parental magmas of plutonic carbonatites, carbonate-silicate immiscibility and decarbonation reactions: evidence from melt and fluid inclusions. Min Assoc Canada Short Course Series 36:123–149

    Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346

    Article  Google Scholar 

  • Wass SY, Rogers NW (1980) Mantle metasomatism—precursor to continental alkaline volcanism. Geochim Cosmochim Acta 44:1811–1823

    Article  Google Scholar 

  • Wass SY, Henderson P, Elliott C (1980) Chemical heterogeneity and metasomatism in the upper mantle—evidence from rare earth and other elements in apatite-rich xenoliths in basaltic rocks from eastern Australia. Phil Trans R Soc Lond A 297:333–346

    Article  Google Scholar 

  • Watson EB (1979) Apatite saturation in basic to intermediate magmas. Geophys Res Lett 6:937–940

    Article  Google Scholar 

  • Watson EB (1980) Apatite and phosphorous in mantle source regions: an experimental study of apatite/melt equilibria at pressures to 25 kbar. Earth Planet Sci Lett 51:322–325

    Article  Google Scholar 

  • Watson EB, Brenan JM, Baker DR (1990) Distribution of fluids in the continental mantle. In: Menzies MA (ed) Continental mantle. Clarendon, Oxford, pp 111–125

    Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and trace element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–14

    Google Scholar 

  • Wyllie PJ, Huang WL (1976) Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applications. Contrib Mineral Petrol 54:79–107

    Article  Google Scholar 

  • Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146:606–619

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol 39:1917–1930

    Article  Google Scholar 

  • Zhang RY, Liou JG, Yang JS, Yui T-F (2000) Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J metamorph Geol 18:149–166

    Article  Google Scholar 

Download references

Acknowledgements

The authors owe thanks to the fellows of the Lithosphere Fluid Research Lab, Eötvös University (Budapest) for the fruitful discussions, especially to Márta Berkesi and Károly Hidas. We appreciate the help of Kamilla Gál-Sólymos in taking the BSE images. T. Guzmics is grateful to his father Snr. Tibor Guzmics and Prof. Friedrich Koller (University of Vienna) for the support during his stay at the University in Vienna as a CEEPUS scholar. The authors are also grateful to Nicholas Tailby (ANU, RSES) and two anonymous reviewers for improving an earlier version of the manuscript. Many thanks to Lesley Rose-Weston (Bayerisches Geoinstitut) for correcting the paper grammatically.

This work was financially supported by Hungarian Science Foundation (OTKA, T 043686) to C. Szabó, by ProRenovanda Culturae Hungariae Foundation, and by the Hungarian Development Bank (MFB, 2007–2008) to T. Guzmics. This is publication No 33 of the Lithosphere Fluid Research Lab, Eötvös University Budapest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Szabó.

Additional information

Editorial handling: B. de Vivo

Electronic supplementary materials

Below is the link to the electronic supplementary materials

ESM 1

(PDF 389 kb)

ESM 2

(PDF 77 kb)

ESM 3

(PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmics, T., Kodolányi, J., Kovács, I. et al. Primary carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes (Hungary). Miner Petrol 94, 225–242 (2008). https://doi.org/10.1007/s00710-008-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-008-0014-5

Keywords

Navigation