Skip to main content
Log in

Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Terpenoid indole alkaloid (TIA) biosynthetic pathway of Catharanthus roseus possesses the major attention in current metabolic engineering efforts being the sole source of highly expensive antineoplastic molecules vinblastine and vincristine. The entire TIA pathway is fairly known at biochemical and genetic levels except the pathway steps leading to biosynthesis of catharanthine and tabersonine. To increase the in-planta yield of these antineoplastic metabolites for the pharmaceutical and drug industry, extensive plant tissue culture-based studies were performed to provide alternative production systems. However, the strict spatiotemporal developmental regulation of TIA biosynthesis has restricted the utility of these cultures for large-scale production. Therefore, the present study was performed to enhance the metabolic flux of TIA pathway towards the biosynthesis of vinblastine by overexpressing two upstream TIA pathway genes, tryptophan decarboxylase (CrTDC) and strictosidine synthase (CrSTR), at whole plant levels in C. roseus. Whole plant transgenic of C. roseus was developed using Agrobacterium tumefaciens LBA1119 strain having CrTDC and CrSTR gene cassette. Developed transgenic lines demonstrated up to twofold enhanced total alkaloid production with maximum ninefold increase in vindoline and catharanthine, and fivefold increased vinblastine production. These lines recorded a maximum of 38-fold and 65-fold enhanced transcript levels of CrTDC and CrSTR genes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Canel C, Lopes-Cardoso MI, Whitmer S, Van der Fits L, Pasquali G, Van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  PubMed  CAS  Google Scholar 

  • Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    Article  PubMed  PubMed Central  Google Scholar 

  • De Luca V, Salim V, Thamm A, Masada SA, Yu F (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 19:35–42

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Balsevich J, Tyler RT, Eilert U, Panchuk BD, Kurz WGW (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Article  Google Scholar 

  • Edge A, Qu A, Easson MLAE, Thamm AMK, Kim KH, De Luca V (2017) A tabersonine 3-reductase Catharanthus roseus mutant accumulates vindoline pathway intermediates. Planta 247:155–169. https://doi.org/10.1007/s00425-017-2775-8

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54:763–784

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of biosynthetic enzymes. Curr Opin Plant Biol 8:657–666

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A, Ibañez MM, Memelink J, van der Heijden R, Verpoorte R (2000) Molecular cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  PubMed  CAS  Google Scholar 

  • Goddijn OJM, Pennings EJM, van der Helm P, Verpoorte R, Hoge JHC (1995) Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 4:315–323

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G, Burlat V, Oudin A, Lanoue A, St-Pierre B, Courdavault V (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethyl butenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28:1215–1234

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarc'h N, St-Pierre B, Burlat V (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182–201

    PubMed  PubMed Central  Google Scholar 

  • Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V (2011a) The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 278:749–763

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V (2011b) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 168:549–557

    Article  PubMed  CAS  Google Scholar 

  • Hughes RH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Metab Eng 4:41–48

    Article  PubMed  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004a) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727

    Article  PubMed  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004b) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276

    Article  PubMed  CAS  Google Scholar 

  • Islas I, Loyola-Vargas VM, Miranda-Ham ML (1994) Tryptophan decarboxylase activity in transformed roots from Catharanthus roseus and its relationship to tryptamine, ajmalicine, and catharanthine accumulation during the culture cycle. In Vitro Cell Dev Biol 30:81–83

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 13:3901–3907

    Article  Google Scholar 

  • Johanson DA (1940) Plant Microtechnique. Mc. Graw Hill Book. Co., New York, p 523

    Google Scholar 

  • Kumar S, Bhatia S (2016) A polymorphic (GA/CT)n- SSR influences promoter activity of tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci Rep 6:33280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Jaggi M, Taneja J, Sinha AK (2011) Cloning and characterization of two new class III peroxidase genes from Catharanthus roseus. Plant Physiol Biochem 49:404–412

    Article  PubMed  CAS  Google Scholar 

  • Liu DH, Ren WW, Cui LJ, Zhang LD, Sun XF, Tang KX (2011) Enhanced accumulation of catharanthine and vindoline in Catharanthus roseus hairy roots by overexpression of transcriptional factor ORCA2. Afr J Biotechnol 10:3260–3268

    Article  CAS  Google Scholar 

  • Liu J, Cai J, Wang R, Yang S (2017) Transcriptional regulation and transport of terpenoid indole alkaloid in Catharanthus roseus: exploration of new research directions. Int J Mol Sci 18:53

    Article  CAS  Google Scholar 

  • Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia atifolia, by use of shoot-tip culture. Comb. Proc Int Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647. https://doi.org/10.3389/fpls.2016.01647

    Article  PubMed  PubMed Central  Google Scholar 

  • Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931

    Article  PubMed  CAS  Google Scholar 

  • Mahroug S, Burlat V, St-Pierre B (2007) Cellular and subcellular organisation of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochem Rev 6:363–381

    Article  CAS  Google Scholar 

  • Mathur AK, Mathur A, Seth R, Verma P, Vyas D (2006) Biotechnological interventions in designing specialty medicinal herbs for twenty-first century: some emerging trends in pathway modulation through metabolic engineering. In: Sharma RK, Arora R (eds) Herbal drugs: a twenty-first century perspective. Jaypee Brothers Medical Publishers, New Delhi, pp 83–94

    Google Scholar 

  • McKnight TD, Bergey DR, Burnett RJ, Nessler CL (1991) Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 185:148–152

    Article  PubMed  CAS  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606. https://doi.org/10.1038/ncomms4606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miralpeix B, Rischer H, Hakkinen TS, Ritala A, Seppanen-Laakso T, Kirsi-Marja OC, Capell T, Christou P (2013) Metabolic engineering of plant secondary products: which way forward ? Curr Pharma Des 19:5622–5639

    Article  CAS  Google Scholar 

  • Mishra S, Bansal S, Mishra B, Sangwan RS, Asha, Jadaun JS, Sangwan NS (2016) RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene- cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera. PLoS One 11(2):e0149691. https://doi.org/10.1371/journal.pone.0149691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodriguez-Conception M, St-Pierre B, Burlat V (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7:1–14

    Google Scholar 

  • Pan Q, Rianika N, Mustafa Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250

    Article  CAS  Google Scholar 

  • Pandey SS, Singh S, Babu CSV, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016) Fungal endophyte of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloids biosynthesis. Sci Rep 6:26583. https://doi.org/10.1038/srep26583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in the production of bioactive monoterpene indole alkaloids: recent progress related to an old dilemma. J Biosci Bioeng 101:287–296

    Article  PubMed  CAS  Google Scholar 

  • Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Michael LAEE, Jordan F, Razvan S, Tomas H, Luca VD (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. PNAS 112:6224–6229

    Article  PubMed  CAS  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Montagu MCE, Inzé D, Oksman-Caldentey KM, Goossens A (2006) Gene to metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. PNAS USA 103:5614–5619

    Article  PubMed  CAS  Google Scholar 

  • Saiman MZ, Mustafa NR, Pomahocova B, Verberne M, Verpoorte R, Choi YH, Schulte AE (2014) Analysis of metabolites in the terpenoid pathway of Catharanthus roseus cell suspensions. Plant Cell Tissue Organ Cult 117:225–239

    Article  CAS  Google Scholar 

  • Sharma A, Verma N, Verma P, Verma RK, Mathur A, Mathur AK (2017a) Optimization of a Bacopa monnieri-based genetic transformation model for testing the expression efficiency of pathway gene constructs of medicinal crops. In Vitro Cell Dev Bio Plants 53:22–32

    Article  CAS  Google Scholar 

  • Sharma A, Verma P, Mathur A, Mathur AK (2017b) Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma 255:425–435. https://doi.org/10.1007/s00709-017-1151-7

    Article  PubMed  CAS  Google Scholar 

  • Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576

    Article  PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Thamm AMK, Qu Y, De Luca V (2016) Discovery and metabolic engineering of iridoid/secoiridoid and monoterpenoid indole alkaloid biosynthesis. Phytochem Rev 15(3):339–361

    Article  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 2:570–578

    Article  CAS  Google Scholar 

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–147

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden JDI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R, Bossche RV, Miettinen K, Espoz J, Purnama PC et al (2015) The bhlh transcription factor bis1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. PNAS USA 112:8130–8135

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Mathur AK (2011a) Direct shoot bud organogenesis and plant regeneration from leaf explants in Catharanthus roseus. Plant Cell Tissue Organ Cult 106:401–408

    Article  CAS  Google Scholar 

  • Verma P, Mathur AK (2011b) Agrobacterium tumefaciens mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Biotechnol Lett 33:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Mathur AK, Srivastava A, Mathur A (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249:255–268

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2015a) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Mathur AK, Khan SA, Verma N, Sharma A (2015b) Transgenic studies for modulating terpenoid indole alkaloids pathway in Catharanthus roseus: present status and future options. Phytochem Rev 16:19–54. https://doi.org/10.1007/s11101-015-9447-8

    Article  CAS  Google Scholar 

  • Verma P, Sharma A, Khan SA, Mathur AK, Shanker K (2014) Morphogenetic and chemical stability of long-term maintained -mediated transgenic plants. Nat Prod Res 29(4):315–320

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R, Alfermann AW (2000) In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Verpoorte R, van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseuscells. In: Cordell GA (ed) The alkaloids, vol 49. Academic, San Diego, pp 221–299

    Google Scholar 

  • Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechol 12:34–46

    Article  CAS  Google Scholar 

  • Wang X, Pan YJ, Chang BW, Hu YB, Guo XR, Tang ZH (2016) Ethylene-induced vinblastine accumulation is related to activated expression of downstream TIA pathway genes in Catharanthus roseus. Bio Med Res Int 2016:1–8. https://doi.org/10.1155/2016/3708187

    Article  CAS  Google Scholar 

  • Whitmer S, Canel C, Hallard D, Goncalves C, Verpoorte R (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a strictosidine synthase over-expressing transgenic cell line S1 of Catharanthus roseus. Plant Cell Tissue Organ Cult 69:85–93

    Article  CAS  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2003) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase overexpressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  Google Scholar 

  • Whitmer S, Canel C, van der Heijden R, Verpoorte R (2004) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tissue Organ Cult 74:73–80

    Article  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the Director, CSIR-CIMAP, Lucknow, for providing the facilities and financial support to perform this work. AS is grateful to the Department of Science and Technology (DST), Gov. of India for providing an INSPIRE fellowship (IF120009). Authors also thank Prof. Johan Memelink of Leiden University for providing the Agrobacterium tumefaciens strain LBA1119 with a construct (<hpt-<Tdc2-<Str-gus>).

Author information

Authors and Affiliations

Authors

Contributions

AKM and AS conceived the idea and planned the work. AS conducted the experimental work. AS and PV analyzed the results and prepared the manuscript. AKM and AM read and edited the manuscript.

Corresponding author

Correspondence to Ajay Kumar Mathur.

Electronic supplementary material

ESM 1

(DOCX 16 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Verma, P., Mathur, A. et al. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Protoplasma 255, 1281–1294 (2018). https://doi.org/10.1007/s00709-018-1233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1233-1

Keywords

Navigation