Skip to main content
Log in

A molecular insight into papaya leaf curl—a severe viral disease

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alemandri V, De Barro P, Bejerman N, Caro EA, Dumón AD, Mattio MF, Rodriguez SM, Truol G (2012) Species within the Bemisia tabaci (Hemiptera: Aleyrodidae) complex in soybean and bean crops in Argentina. J Econ Entomol 105(1):48–53

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anandlakshmi R, Pruss GJ, Ge X (1998) A viral suppressor of gene silencing in plant. Proc Natl Acad Sci U S A 95(22):13079–13084

    Article  Google Scholar 

  • Araujo MMM, Tavares ET, Da Silva FR, Marinho VLA, Souza JMT (2007) Molecular detection of papaya meleira virus in the latex of Carica papaya by RT-PCR. J Virol Methods 146:305–310

    Article  PubMed  CAS  Google Scholar 

  • Azad MA, Amin L, Sidik NM (2014) Gene technology for papaya ringspot virus disease management. The Sci World J. doi:10.1155/2014/768038

    Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants 1:15145

    Article  CAS  Google Scholar 

  • Bau HJ, Kung YJ, Raja J, Chan SJ, Chen KC, Chen YK, Wu HW, Yeh SD (2008) Potential threat of a new pathotype of papaya leaf distortion mosaic virus infecting transgenic papaya resistant to papaya ring spot virus. Phytopathology 98:848–856

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8(10):1833–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33(2):351–357

    Article  CAS  PubMed  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA-βsatellites of begomoviruses. Arch Virol 153:763–781

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Bull SE, Mansoor S, Amin I, Markham PG (2002) Universal primers for the PCR-mediated amplification of DNA β: a molecule associated with some monopartite begomoviruses. Mol Biotechnol 20:315–318

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas Castillo J (2012) Geminiviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, London, pp 351–373

    Google Scholar 

  • Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L (1996) Viruses of plants. CAB International, Wellingford

    Google Scholar 

  • Byun HS, Kil EJ, Seo H, Suh SS, Lee TK, Lee JH, Kim JK, Lee KY, Ko SJ et al (2016) First report of papaya leaf curl virus in papayas in Korea and recovery of its symptoms. Plant Dis 100(9):1958

    Article  Google Scholar 

  • Capoor SP (1981) Viral and virus-like diseases of crops and their control. ICAR Bulletin, Revised edition 1981:13–14

    Google Scholar 

  • Carrazana NJ, González-de-León D, Ruiz-Castro B, Piñero D, Silva-Rosales L (2006) Distribution of papaya ring spot virus and papaya mosaic virus in papaya plants (Carica papaya) in Mexico. Plant Dis 90:1004–1011

    Article  Google Scholar 

  • Chang LS, Lee YS, Su HJ, Hung TH (2003) First report of papaya leaf curl virus infecting papaya plants in Taiwan. Plant Dis 87(2):204

    Article  Google Scholar 

  • Chen HM, Lin CY, Tsai WS, Kenyon L, Chan MT, Yen JY, Chang SY, Peña RDL, Schafleitner R (2016b) Resistance to viral yellow leaf curl in tomato through RNAi targeting two Begomovirus species strains. J Plant Biochem Biotechnol 25(2):199–207

    Article  CAS  Google Scholar 

  • Chen YK, Chao HY, Shih PJ, Tsai WY, Chao CH (2016a) First report of papaya leaf curl Guangdong virus infecting Lisianthus in Taiwan. APS, Dis Notes 100(11):2342

    Google Scholar 

  • Chowda-Reddy RV, Kirankumar M, Seal SE, Muniyappa V, Valand GB, Govindappa MR, Colvin J (2012) Bemisia tabaci Phylogenetic groups in India and the relative transmission efficacy of tomato leaf curl Bangalore virus by an indigenous and an exotic population. J Integ Agric 11(2):235–248

    Article  Google Scholar 

  • Conover RA (1962) Virus diseases of the papaya in Florida. Phytopathology 52:6

    Google Scholar 

  • Conover RA, Litz RE (1978) Progress in breeding papayas with tolerance to papaya ringspot virus. Proc. Fla. State Hort Soc 91:182–184

    Google Scholar 

  • Daltro CB, PereiraII ÁJ, Cascardo RS, Alfenas-Zerbini P, Bezerra-Junior JEA, Lima JAA, Zerbini FM, Andrade EC (2012) Genetic variability of papaya lethal yellowing virus isolates from Ceará and Rio Grande do Norte states, Brazil. Trop Plant Pathol 37:37–43

    Article  Google Scholar 

  • David RJ (2003) Plant viruses transmitted by whiteflies. Eur J of Plant Pathol 109:195–219

    Article  Google Scholar 

  • Davis MJ, Ying Z (2004) Development of papaya breeding lines with transgenic resistance to papaya ringspot virus. Plant Dis 88:352–358

    Article  CAS  Google Scholar 

  • Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88(15):6721–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  CAS  PubMed  Google Scholar 

  • De Bokx JA (1965) Hosts and electron microscopy of two papaya viruses. Plant Dis Rep 49:742–746

    Google Scholar 

  • Descriptions of plant viruses (2016) http://www.dpvweb.net/index.php; Accessed 20 Dec 2016

  • Dubey DK, Tiwari AK, Upadhyay PP (2015) Survey, incidence and serological identification of papaya leaf curl virus in eastern Uttar Pradesh. Indian phytopath 68(1):123–126

    Google Scholar 

  • Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic papaya provides practical control of papaya ring spot virus in Hawaii. Plant Dis 86(2):101–105

    Article  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8(6):655–677

    Article  CAS  PubMed  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves D (2006) Transgenic papaya: development, release, impact, and challenges. Adv Virus Res 67:317–354

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Guo Q, Cui X, Liu Y et al (2015) Comparison of transmission of papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci Complex. Sci Rep 5:15432. doi:10.1038/srep15432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallan V, Saxena S, Singh BP (1998) Short communication: ageratum, croton and Malvastrum harbour geminiviruses: evidence through PCR amplification. World J Microbiol Biotechnol 14:931–932

    Article  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  PubMed  Google Scholar 

  • Hanson P, Lu SF, Wang JF, Chen W, Kenyon L, Tan CW, Tee KL, Wang YY, Hsu YC, Schafleitner R, Ledesma D (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic 201:346–354

    Article  CAS  Google Scholar 

  • Harrison BD (1985) Advances in geminivirus research. Annu Rev Phytopathol 23:55–82

    Article  CAS  Google Scholar 

  • Haung JF, Zhou XP (2006) First report of papaya leaf curl China virus infecting Corchoropsis timentosa in China. Plant Pathol 55:291

    Article  Google Scholar 

  • Hemambara HS, Yogesh MS (2014) Production and marketing problems of papaya growers in north Karnataka. IOSR-JBM 16(7):20–23

    Google Scholar 

  • Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu S (2011) An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One 6:e16061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull R (2002) Matthews’ plant virology. Academic Press, London, p 1001

    Google Scholar 

  • Ilyas M, Qazi J, Mansoor S, Briddon RW (2010) Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J Gen Virol 91:2091–2101

    Article  CAS  PubMed  Google Scholar 

  • Indian Horticulture Database. Ed. Saxena M and Gandhi C P (2015) National Horticulture Board, Ministry of Agriculture, Government of India, Gurgaon. Pages 248. (URL: http://nhb.gov.in/area-pro/NHB_Database_2015.pdf; Accessed 22 June 2016

  • Jenson DD (1949) Papaya ring spot virus and its insect vector relationship. Phytopathology 39:212–220

    Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nature Plants 1:144

    Article  CAS  Google Scholar 

  • Kawano S, Yonaha T (1992) The occurrence of papaya leaf distortion mosaic virus in Okinawa. FFTC Tech Bull 132:13–23

    Google Scholar 

  • Khatoon S, Kumar A, Sarin NB, Khan JA (2016) RNAi-mediated resistance against cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes 52:530–537

    Article  CAS  PubMed  Google Scholar 

  • Koeda S, Takisawa R, Nabeshima T, Tanaka Y, Kitajima A (2015) Production of tomato yellow leaf curl virus-free parthenocarpic tomato plants by leaf primordia-free shoot apical meristem culture combined with in vitro grafting. The Hortic J 84:327–333

    Article  CAS  Google Scholar 

  • Kumar J, Kumar A, Khan JA, Aminuddin JA (2009) First report of papaya leaf curl virus naturally infecting tobacco in India. J Plant Path 91(4 - Supplement):S4 107

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 22:msw054 Accessed 4 September 2016

    Google Scholar 

  • Kumar SP, Patel SK, Kapopara RG, YogeshT JYT, Pandya HA (2012) Evolutionary and molecular aspects of Indian tomato leaf curl virus coat protein. Int J Plant Genomics. doi:10.1155/2012/417935

    Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann App Biol 140(2):109–127

    Article  Google Scholar 

  • Lee W, Park J, Lee GS, Seunghwan LS, Akimoto SI (2013) Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8(5):e63817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindbo JL, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5(12):1749–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lius S, Manshardt RM, Fitch MMM, Slightom JL, Sanford JC, Gonsalves D (1997) Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol Breed 3:161–168

    Article  Google Scholar 

  • Meena RK, Gour K, Patni V (2014) Production of leaf curl virus-free chilli by meristem tip culture. Int. J. Pharm. Sci Rev Res 25:67–71

    CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, Yu Q, Moore PH, Paull RE, Chen NJ, Wang ML et al (2012) Genome of papaya, a fast growing tropical fruit tree. Tree Genet Genomes 8:445–462

    Article  Google Scholar 

  • Mishra M, Chandra R, Saxena S (2007) Papaya. In: Kole C (ed) Genome mapping and molecular breeding in plants- fruits and nuts, vol 4. Springer, USA, pp 230–257

    Google Scholar 

  • Nadeem A, Mehmood T, Tahir M, Khalid S, Xiong Z (1997) First report of papaya leaf curl disease in Pakistan. Plant Dis 81(11):1333

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nariani TK (1956) Leaf curl of papaya. Indian Phytopathol 9:151–155

    Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72(12):10050–10057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76(5):925–932

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35

    Article  CAS  PubMed  Google Scholar 

  • Papaya production statistics from Food and Agricultural Organization of United Nations 2016: Economic and Social Department: The Statistical Division. UN FAO Corporate Statistical Database (www.fao.org); Accessed 22 June 2016

  • Raj SK, Snehi SK, Khan MS, Singh R, Khan AA (2008) Molecular evidence for association of tomato leaf curl New Delhi virus with leaf curl disease of papaya (Carica papaya L.) in India. Australasian Plant Dis Notes 3:152–155

    Article  CAS  Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276(5318):1558–1560

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR (1999) Characterization of potyvirus and gemini virus movement proteins. Ph.D. thesis. University of California-Davis, Davis

    Google Scholar 

  • Rojas MR, Gilbertson RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly transmitted geminiviruses. Plant Dis 77:340–347

    Article  CAS  Google Scholar 

  • Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291:110–125

    Article  CAS  PubMed  Google Scholar 

  • Sagar SB, Parmar HC, Darji VB (2012) Economics of production of papaya in middle Gujarat region of Gujarat, India. GJBAHS 1(2):10–17

    Google Scholar 

  • Saxena S, Chandra R, Srivastava AP, Mishra M, Pathak RK, Ranade SA (2005) Analysis of genetic diversity among papaya cultivars using single primer amplification reaction (SPAR) methods. J Hortic Sci Tech 80(3):291–296

    CAS  Google Scholar 

  • Saxena S, Hallan V, Singh BP, Sane PV (1998a) Leaf curl disease of Carica papaya from India may be caused by a bipartite geminivirus. Plant Dis 82(1):126

    Article  Google Scholar 

  • Saxena S, Hallan V, Singh BP, Sane PV (1998b) Evidence from nucleic acid hybridization tests for a geminivirus infection causing leaf curl disease of papaya in India. Indian J Exp Biol 36:229–232

    CAS  Google Scholar 

  • Saxena S, Hallan V, Singh BP, Sane PV (1998c) Nucleotide sequence and inter-geminiviral homologies of the DNA a of papaya leaf curl geminivirus from India. Biochem Mol Biol Int 45:101–113

    CAS  PubMed  Google Scholar 

  • Saxena S, Rupesh KK, Singh V (2013) Designing of putative siRNA against geminiviral suppressors of RNAi to develop geminivirus-resistant papaya crop. Int J Bioinforma Res Appl 9(1):3–12

    Article  CAS  Google Scholar 

  • Saxena S, Singh N, Ranade SA, Sunil GB (2011) Strategy for generic resistance to geminiviruses infecting tomato and papaya through in silico siRNA search. Virus Genes 43:409–434

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Singh VK, Verma S (2016) PCR mediated detection of sex and PaLCuV infection in papaya- a rewiew. J Appl Hortic 18(1):80–84

    Google Scholar 

  • Shahid MS, Yoshida S, Khatri-Chhetri GB, Briddon RW, Natsuaki KT (2013) Complete nucleotide sequence of a monopartite begomovirus and associated satellites infecting Carica papaya in Nepal. Virus Genes 46:581–584

    Article  CAS  PubMed  Google Scholar 

  • Silva AMR, Kitajima EW, Sousa MU, Resende RO (1997) Papaya lethal yellowing virus: a possible member of the Tombusvirus genus. Fitopatol Bras 22:529–534

    CAS  Google Scholar 

  • Sinha DP, Saxena S, Singh M, Tiwari SK (2013) Phylogenetic relationship of coat protein genomic components of Chilli leaf curl virus. Vegetable Science 40(2):149–154

    Google Scholar 

  • Srivastava A, Jaidi M, Kumar S, Raj SK, Shukla S (2015) Association of papaya leaf curl virus with the leaf curl disease of grain amaranth (Amaranthus cruentus L.) in India. Phytoparasitica 43:97–101

    Article  CAS  Google Scholar 

  • Srivastava A, Raj SK, Kumar S, Snehi SK (2013) New record of papaya leaf curl virus and ageratum leaf curl beta-satellite associated with yellow vein disease of aster in India. New Dis Rep 28:6

    Article  Google Scholar 

  • Srivastava N, Chandra R, Saxena S, Bajpai A (2010) PCR based amplification and detection of papaya leaf curl virus (PaLCuV). A proceeding of IInd IS on papaya. Acta hort 851:241–245

    Article  CAS  Google Scholar 

  • Sudarshana MR, Wang HL, Lucas WJ, Gilbertson RL (1998) Dynamics of bean dwarf mosaic gemini virus cell-to-cell and longdistance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol Plant-Microbe Interact 11:277–291

    Article  CAS  Google Scholar 

  • Tang G, Galili G, Zhuang X (2007) RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–369

    Article  CAS  Google Scholar 

  • Taylor DR (2001) Virus diseases of Carica papaya in Africa—their distribution, importance, and control. Rice Research Station, PMB 736, Freetown, Sierra Leone, Plant virology in sub-Saharan Africa

  • Thomas KM, Krishnaswamy CS (1939) Leaf crinkle: a transmissible disease of papaya. Curr Sci 8:316

    Google Scholar 

  • Ueda S, Kitamura T, Kijima K, Honda KI, Kanmiya K (2008) Distribution and molecular characterization of distinct Asian populations of Bemisiatabaci (Hemiptera: Aleyrodidae) in Japan. J Appl Entomol 133:355–366

    Article  CAS  Google Scholar 

  • Vanderschuren H, Akbergenov R, Pooggin M, Hohn T, Gruissem W, Zhang P (2007) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64(5):549–557

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Mandal B, Singh MK (2011) Global emergence and spread of whitefly (Bemisia tabaci) transmitted geminiviruses. In the whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer Netherlands, pp 205-292

  • Vidal CA (2005) Transmissão do vírus da meleira do mamoeiro (Carica papayal.) porinsetos. Magistra 17:101–106

    Google Scholar 

  • Vu TV, Choudhury NR, Mukherjee SK (2012) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Xie Y, Zhou X (2004) Molecular characterization of two distinct begomoviruses from papaya in China. Virus Genes 29(3):303–309

    Article  CAS  PubMed  Google Scholar 

  • Yang CX, Luo JS, Zheng LM, Wu ZJ, Xie LH (2011) Mixed infection of papaya leaf curl China virus and Siegesbeckia yellow vein virus in Siegesbeckia orientalis in China. J Plant Pathol 93(4, Supplement):S4 81

    Google Scholar 

  • Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of tomato yellow leaf curl virus Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94(5):490–496

    Article  CAS  PubMed  Google Scholar 

  • Yonaha T, Yonemori S, Tamori M (1976) Relation between the flight occurrence of alate aphids and the spread of papaya virus disease in the field. Okinawa Agric 14:7–15

    Google Scholar 

  • Zaidi SS, Mansoor S, Ali Z, Tashkandi M, Mahfouz MM (2016) Engineering plants for geminivirus resistance with CRISPR/Cas9 system. Trends Plant Sci 21:279–281

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ma XY, Qian YJ, Zhou XP (2010) Molecular characterization and infectivity of papaya leaf curl China virus infecting tomato in China. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 11(2):109–114

    Article  CAS  Google Scholar 

  • Zhang W, Vanderschuren H, Futterer J, Gruissem W (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3(4):385–397

    Article  PubMed  CAS  Google Scholar 

  • Zhou XP, Xie Y, Tao XR, Zhang KZ, Li ZH, Fauquet CM (2003) Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84:237–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Priyanka Varun and Sangeeta Saxena gratefully acknowledge Rajiv Gandhi National Fellowship from University Grants Commission (UGC), Govt. of India, and partial support from UGC, New Delhi, Govt. of India, Major Research Project (MRP) No. 37-485/2009 (SR), respectively. Authors acknowledge Babasaheb Bhimrao Ambedkar University-A Central University, Lucknow, India, for the support and necessary infrastructure facilities provided for the above research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Saxena.

Additional information

Handling Editor: Jaideep Mathur

Priyanka Varun and Sangeeta Saxena, with a deep sense of gratitude and respect, would like to acknowledge the immense scientific input, able guidance, and contribution to the scientific world by the most beloved Dr. S. A. Ranade posthumously.

Electronic supplementary material

ESM 1

(DOCX 19 kb).

ESM 2

(DOCX 77 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varun, P., Ranade, S.A. & Saxena, S. A molecular insight into papaya leaf curl—a severe viral disease. Protoplasma 254, 2055–2070 (2017). https://doi.org/10.1007/s00709-017-1126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1126-8

Keywords

Navigation