Skip to main content
Log in

High light acclimation of Oryza sativa L. leaves involves specific photosynthetic-sourced changes of NADPH/NADP+ in the midvein

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Previous studies have shown that exposure of Arabidopsis leaves to high light (HL) causes a systemic acquired acclimation (SAA) response in the vasculature. It has been postulated that C4-like photosynthesis in the leaf veins triggers this response via the Mehler reaction. To investigate this proposed connection and extend SAA to other plants, we examined the redox state of NADPH, ascorbate (ASA), and glutathione (GSH) pools; levels and histochemical localization of O2- and H2O2 signals; and activities of antioxidant enzymes in the midvein and leaf lamina of rice, when they were subjected to HL and low light. The results showed that (1) high NADPH/NADP+ was generated by C4-like photosynthesis under HL in the midvein and (2) SAA was colocally induced by HL, as indicated by the combined signaling network, including the decrease in redox status of ASA and GSH pools, accumulation of H2O2 and O2- signals, and high superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. The high correlations between these occurrences suggest that the enhanced NADPH/NADP+ in HL-treated midveins might alter redox status of ASA and GSH pools and trigger H2O2 and O2- signals during SAA via the Mehler reaction. These changes in turn upregulate SOD and APX activities in the midvein. In conclusion, SAA may be a common regulatory mechanism for the adaptation of angiosperms to HL. Manipulation of NADPH/NADP+ levels by C4-like photosynthesis promotes SAA under HL stress in the midvein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderlund M, Nissen TL, Nielsen J, Villadsen J, Rydstrom J, Hahn-Hagerdal B, Kielland-Brandt MC (1999) Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Microbiol 65(6):2333–2340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arbona V, Hossain Z, Lopez-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132(4):452–466. doi:10.1111/j.1399-3054.2007.01029.x

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1984) Chloroplasts: formation of active oxygen and its scavenging. In: Lester P (ed) Methods in enzymology, vol 105. Academic, New York, pp 422–429. doi:10.1016/S0076-6879(84)05059-X

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  CAS  PubMed  Google Scholar 

  • Bechtold U, Richard O, Zamboni A, Gapper C, Geisler M, Pogson B, Karpinski S, Mullineaux PM (2008) Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. J Exp Bot 59(2):121–133. doi:10.1093/jxb/erm289

    Article  CAS  PubMed  Google Scholar 

  • Brown NJ, Palmer BG, Stanley S, Hajaji H, Janacek SH, Astley HM, Parsley K, Kajala K, Quick WP, Trenkamp S, Fernie AR, Maurino VG, Hibberd JM (2010) C4 acid decarboxylases required for C4 photosynthesis are active in the mid-vein of the C4 species Arabidopsis thaliana, and are important in sugar and amino acid metabolism. Plant J: For Cell and Mole Biol 61(1):122–133. doi:10.1111/j.1365-313X.2009.04040.x

    Article  CAS  Google Scholar 

  • Casati P, Drincovich M, Edwards G, Andreo C (1999) Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res 61(2):99–105. doi:10.1023/a:1006209003096

    Article  CAS  Google Scholar 

  • Castillo FJ, Penel C, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves: involvement of Ca. Plant Physiol 74(4):846–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J-W, Cao K-F (2007) Changes in activities of antioxidative system and monoterpene and photochemical efficiency during seasonal leaf senescence in Hevea brasiliensis trees. Acta Physiol Plant 30(1):1–9. doi:10.1007/s11738-007-0070-1

    Article  Google Scholar 

  • Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD (2006) AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 281(36):26280–26288. doi:10.1074/jbc.M601354200

    Article  CAS  PubMed  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11(7):1277–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhindsa R, Plumb-Dhindsa P, Thorpe T (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101. doi:10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  • Doulis AC, Debian N, Kingston-Smith AH, Foyer CH (1997) Differential localization of antioxidants in maize leaves. Plant Physiol 114:7

    Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70(2):616–620. doi:10.1016/0003-2697(76)90488-7

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100. doi:10.1104/pp. 110.166181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33(4):691–705

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53(372):1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineaux PM (2009) The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21(7):2143–2162. doi:10.1105/tpc.108.061507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212. doi:10.1016/0003-2697(80)90139-6

    Article  CAS  PubMed  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73(1–3):223–231. doi:10.1023/a:1020459416987

    Article  CAS  PubMed  Google Scholar 

  • Hibberd JM, Quick WP (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415(6870):451–454. doi:10.1038/415451a

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of Ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25(3):385–395

    CAS  Google Scholar 

  • Jana S, Choudhuri MA (1982) Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot 12:345–354. doi:10.1016/0304-3770(82)90026-2

    Article  CAS  Google Scholar 

  • Janacek SH, Trenkamp S, Palmer B, Brown NJ, Parsley K, Stanley S, Astley HM, Rolfe SA, Paul Quick W, Fernie AR, Hibberd JM (2009) Photosynthesis in cells around veins of the C3 plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. Plant J, vol 59, 2009/03/24 edn. doi:10.1111/j.1365-313X.2009.03873.x

  • Kalachanis D, Manetas Y (2010) Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems. Physiol Plant 139(3):313–323. doi:10.1111/j.1399-3054.2010.01362.x

    CAS  PubMed  Google Scholar 

  • Kangasjärvi S, Nurmi M, Tikkanen M, Aro E-M (2009) Cell-specific mechanisms and systemic signalling as emerging themes in light acclimation of C3 plants. Plant Cell Environ 32(9):1230–1240. doi:10.1111/j.1365-3040.2009.01982.x

    Article  PubMed  Google Scholar 

  • Karpinski S (1999) Systemic signaling and scclimation in response to excess excitation energy in Arabidopsis. Science 284(5414):654–657. doi:10.1126/science.284.5414.654

    Article  CAS  PubMed  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9(4):627–640. doi:10.1105/tpc.9.4.627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinsman EA, Pyke KA (1998) Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. Development 125(10):1815–1822

    CAS  PubMed  Google Scholar 

  • Leegood RC (2008) Roles of the bundle sheath cells in leaves of C3 plants. J Exp Bot 59(7):1663–1673. doi:10.1093/jxb/erm335

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250(1):3–19. doi:10.1007/s00709-011-0365-3

    Article  CAS  PubMed  Google Scholar 

  • Morison JI, Gallouet E, Lawson T, Cornic G, Herbin R, Baker NR (2005) Lateral diffusion of CO2 in leaves is not sufficient to support photosynthesis. Plant Physiol 139(1):254–266. doi:10.1104/pp. 105.062950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muhlenbock P, Szechynska-Hebda M, Plaszczyca M, Baudo M, Mullineaux PM, Parker JE, Karpinska B, Karpinski S (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell 20(9):2339–2356. doi:10.1105/tpc.108.059618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mullineaux PM, Karpinski S, Baker NR (2006) Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol 141(2):346–350. doi:10.1104/pp. 106.078162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patterson BD, Payne LA, Chen YZ, Graham D (1984) An inhibitor of catalase induced by cold in chilling-sensitive plants. Plant Physiol 76(4):1014–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson RB (1991) Effects of O2 and CO2 concentrations on quantum yields of photosystems I and II in tobacco leaf tissue. Plant Physiol 97(4):1388–1394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfanz HP, Aschan GA, Langenfeld-Heyser RL-H, Wittmann CW, Loose ML (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89(4):147–162. doi:10.1007/s00114-002-0309-z

    Article  CAS  PubMed  Google Scholar 

  • Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250(2):585–600. doi:10.1007/s00709-012-0444-0

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal Biochem 363(1):58–69. doi:10.1016/j.ab.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  • Ramiro D, Guerreiro-Filho O, Mazzafera P (2006) Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J Chem Ecol 32(9):1977–1988. doi:10.1007/s10886-006-9122-z

    Article  CAS  PubMed  Google Scholar 

  • Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ (2007) Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant Cell 19(12):4091–4110. doi:10.1105/tpc.106.045898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen W, Wei Y, Dauk M, Tan Y, Taylor DC, Selvaraj G, Zou J (2006) Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18(2):422–441. doi:10.1105/tpc.105.039750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54(1):39–50

    CAS  PubMed  Google Scholar 

  • Smirnoff N, Clombé S (1988) Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot 39(8):1097–1108. doi:10.1093/jxb/39.8.1097

    Article  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065. doi:10.1105/tpc.106.041673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28(1):66–80. doi:10.1007/s00344-008-9075-2

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223(6):1145–1153. doi:10.1007/s00425-005-0160-5

    Article  CAS  PubMed  Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2 synthase from other NAD (P) H oxidoreductases. Plant Physiol 115(2):543–550

    PubMed Central  PubMed  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53(372):1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Walz C, Juenger M, Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31(2):189–197. doi:10.1046/j.1365-313X.2002.01348.x

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flugge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139(1):39–51. doi:10.1104/pp. 105.065953

    Article  CAS  PubMed  Google Scholar 

  • Yu GH, Li W, Yuan ZY, Cui HY, Lv CG, Gao ZP, Han B, Gong YZ, Chen GX (2012) The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica 51(1):33–44. doi:10.1007/s11099-012-0081-z

    Article  Google Scholar 

  • Zhang J, Li D-M, Sun W-J, Wang X-J, Bai J-G (2012) Exogenous p-hydroxybenzoic acid regulates antioxidant enzyme activity and mitigates heat stress of cucumber leaves. Sci Hortic 148:235–245. doi:10.1016/j.scienta.2012.10.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (grant no. 31271621/C1302), the Natural Science Foundation of Jiangsu Province (grant no. 11KJA180001), and the Leading Academic Discipline Project of Biology of Jiangsu Province.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Gao.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Chen, G., Xu, J. et al. High light acclimation of Oryza sativa L. leaves involves specific photosynthetic-sourced changes of NADPH/NADP+ in the midvein. Protoplasma 252, 77–87 (2015). https://doi.org/10.1007/s00709-014-0662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0662-8

Keywords

Navigation