Skip to main content
Log in

Involvement of phospholipases C and D in the defence responses of riboflavin-treated tobacco cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Riboflavin is an activator of defence responses in plants that increases resistance against diseases caused by fungal, oomycete, bacterial and viral pathogens. However, the mechanisms driving defence activation by riboflavin are poorly understood. We investigated the signal transduction pathways of phospholipase C (PLC) and phospholipase D (PLD) in tobacco (Nicotiana tabacum) suspension cells using a pharmacological approach to confirm whether riboflavin-mediated activation of the defence response is dependent on both PLC and PLD. The expression patterns analysed by quantitative reverse transcription-polymerase chain reaction demonstrated that the tobacco PLC and PLD gene families were differentially expressed in riboflavin-treated tobacco cells. PLC and PLD expression accompanied defence responses including the expression of defence response genes (PAL, PR-1a and PR-1b), the production of hydrogen peroxide and the accumulation of the phytoalexin scopoletin in tobacco cells treated with riboflavin. These defence responses were significantly inhibited in the presence of the PLC inhibitor U73122 and the PLD inhibitor 1-butanol; however, inhibitor analogues had no effect. Moreover, treating tobacco cells with phosphatidic acid, a signalling molecule produced by phospholipase catalysis, induced the accumulation of the phytoalexin scopoletin and compensated for the suppressive effects of U73122 and 1-butanol on riboflavin-induced accumulation of the phytoalexin. These results offer pharmacological evidence that PLC and PLD play a role in riboflavin-induced defences of tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

PA:

Phosphatidic acid

PAL:

Phenylalanine ammonia lyase

PLC:

Phospholipase C

PLD:

Phospholipase D

PR:

Pathogenesis-related

ROS:

Reactive oxygen species

References

  • Alami I, Mari S, Clérivet A (1998) A glycoprotein from Ceratocystis fimbriata f. sp. platani triggers phytoalexin synthesis in Platanus × acerifolia cell-suspension cultures. Phytochemistry 48:771–776

    Article  CAS  Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA 90:7327–7331

    Article  PubMed  CAS  Google Scholar 

  • Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Blanco FA, Zanetti ME, Daleo GR (2008) Calcium-dependent protein kinases are involved in potato signal transduction in response to elicitors from the oomycete Phytophthora infestans. J Phytopathol 156:53–61

    Article  CAS  Google Scholar 

  • Cabrera CJ, Messiaen J, Cambier P, Cutsem PV (2006) Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiol Plant 127:44–56

    Article  CAS  Google Scholar 

  • Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipase in action during plant defense signaling. Plant Signal Behav 6:13–18

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang WD, Song FM, Zheng Z (2007) Phospholipase C/diacylycerol kinase-mediated signalling is required for benzothiadiazole-induced oxidative burst and hypersensitive cell death in rice suspension-cultured cells. Protoplasma 230:13–21

    Article  PubMed  CAS  Google Scholar 

  • Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P (2002) Downreglulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14:1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Costet L, Fritig B, Kauffmann S (2002) Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants. Physiol Plant 115:228–235

    Article  PubMed  CAS  Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors—a defense against microbial infection in plants. Annu Rev Plant Physiol 35:243–275

    Article  CAS  Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    Article  PubMed  Google Scholar 

  • Deng BL, Deng S, Sun F, Zhang SJ, Dong HS (2011) Down-regulation of free riboflavin content induces hydrogen peroxide and a pathogen defense in Arabidopsis. Plant Mol Biol 77:185–201

    Article  PubMed  CAS  Google Scholar 

  • Dixon AD (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dong HS, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811

    Article  PubMed  CAS  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Gut-Rella M, Meier B, Dincher S, Staub T, Uknes S, Métraus JP, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  CAS  Google Scholar 

  • Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

    Article  PubMed  CAS  Google Scholar 

  • Kasparovsky T, Blein JP, Mikes V (2004) Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway. Plant Physiol Biochem 42:429–435

    Article  PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross-talk in defense signaling. Plant Physiol 146:839–844

    Article  PubMed  CAS  Google Scholar 

  • Krinke O, Flemr M, Vergnolle C, Collin S, Renou JP, Taconnat L, Yu A, Burketová L, Valentová O, Zachowski A, Ruelland E (2009) Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiol 150:424–436

    Article  PubMed  CAS  Google Scholar 

  • Kuc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33:275–297

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Laxalt AM, Munnik T (2002) Phospholipid signalling in plant defence. Curr Opin Plant Biol 5:332–338

    Article  PubMed  CAS  Google Scholar 

  • Laxalt AM, Raho N, Have AT, Lamattina L (2007) Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells. J Biol Chem 282:21160–21168

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Hirt H, Lee Y (2001) Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J 26:479–486

    Article  PubMed  CAS  Google Scholar 

  • Lerat S, Babana AH, El Oirdi M, El Hadrami A, Daayf F, Beaudoin N, Bouarab K, Beaulieu C (2009) Streptomyces scabiei and its toxin thaxtomin A induce scopoletin biosynthesis in tobacco and Arabidopsis thaliana. Plant Cell Rep 28:1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Hong YY, Wang XM (2009) Phospholipase D-and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 1791:927–935

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Wei FF, Wan LL, Liu H, Zhu XP, Liang YC (2010) Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol Mol Plant Pathol 74:330–336

    Article  CAS  Google Scholar 

  • Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96:533–542

    Article  CAS  Google Scholar 

  • Madrid E, Corchete P (2010) Silymarin secretion and its elicitation by methyljasmonate in cell cultures of Silybum marianum is mediated by phospholipase D–phosphatidic acid. J Exp Bot 61:747–754

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid-based signalling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Musgrave A (2001) Phospholipid signaling in plants: holding on to phospholipase D. Sci STKE 111:pe42

    Google Scholar 

  • Nakashita H, Yasuda M, Nishioka M, Hasegawa S, Arai Y, Uramoto M, Yoshida S, Yamaguchi I (2002) Chloroisonicotinamide derivative induces a broad range of disease resistance in rice and tobacco. Plant Cell Physiol 43:823–831

    Article  PubMed  CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang ZB, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    Article  PubMed  CAS  Google Scholar 

  • Pleskot R, Potocký M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentová O, Novotná Z, Zárský V (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62:494–507

    Article  PubMed  CAS  Google Scholar 

  • Profotová B, Burketová L, Novotná Z, Martinec J, Valentová O (2006) Involvement of phospholipases C an D in early response to SAR an ISR inducers in Brassica napus plants. Plant Physiol Biochem 44:143–151

    Article  PubMed  Google Scholar 

  • Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, ten Have A, Laxalt AM (2011) Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol 168:534–539

    Article  PubMed  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Taguchi G, Fujikawa S, Yazawa T, Kodaira R, Hayashida N, Shimosaka M, Okazaki M (2000) Scopoletin uptake from culture medium and accumulation in the vacuoles after conversion to scopolin in 2,4-D-treated tobacco cells. Plant Sci 151:153–161

    Article  PubMed  CAS  Google Scholar 

  • Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167:201–208

    Article  PubMed  CAS  Google Scholar 

  • Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK (2008) Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem 46:627–637

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Vasconsuelo A, Giuletti AM, Picotto G, Rodriguez-Talou J, Boland R (2003) Involvement of the PLC/PKC pathway in chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Sci 165:429–436

    Article  CAS  Google Scholar 

  • Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A (2005) Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233

    Article  PubMed  CAS  Google Scholar 

  • Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GC, Ekengren SK, Meijer HJ, Seifi A, Bai Y, ten Have A, Munnik T, Thomma BP, Joosten MH (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239

    Article  PubMed  CAS  Google Scholar 

  • Wang XM (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Devaiah SP, Zhang WH, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Tanabe S, Minami E, Shibuya N (2004) Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiol 45:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Minami E, Ueki J, Shibuya N (2005) Elicitor-induced activation of phospholipase plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol 46:579–587

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ, Yang X, Sun MW, Sun F, Deng S, Dong HS (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51:167–174

    Article  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Shujian Zhang (University of Florida) for reviewing this manuscript. This work was supported by the National Natural Science Foundation (30871620, 31171806), the Special Fund for Agro-Scientific Research in the Public Interest (201003065) and the Project from Education Department of Shandong Province (J08LF06) in China.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuancun Liang.

Additional information

Handling Editor: Adrienne R. Hardham

Lianlian Wang and Xiaoping Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhu, X., Liu, J. et al. Involvement of phospholipases C and D in the defence responses of riboflavin-treated tobacco cells. Protoplasma 250, 441–449 (2013). https://doi.org/10.1007/s00709-012-0426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0426-2

Keywords

Navigation